
Brought to you by

 Open the book and find:

•	An explanation of
NoSQL jargon

•	Why Enterprise NoSQL
is necessary

•	What to look out for
and why

•	What’s possible with
NoSQL

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

ISBN: 978-1-118-82900-4
Not for resale

Most people think they have access to all the
data that they can. But that’s usually only true
for data that conforms to the structure and
data model required for a relational database.
The new generation of NoSQL databases
are turning that perception on its head and
speeding up development time dramatically.

•	Make	the	most	of	all	of	your	data	—	
schema-agnostic	NoSQL	databases	don’t	
put	limits	on	the	data

•	Deliver	applications	with	speed	and	
agility	—	don’t	be	slowed	down	by	time	
intensive	ETL	or	data	modeling

•	Solve	new	problems	—	without	the	limits	of	a	
relational	schema,	you	can	deliver	apps	you	
never	thought	possible

•	Make	smart	choices	—	decide	which	
NoSQL	database	is	the	right	one	for	
your	project

What’s the question
you’ve always wanted to ask
of your data?

Enterprise	N
oSQ

L
B

rooks Charlie Brooks

•	Do more with your structured
and unstructured data

•	Combine disparate data
sources without the limits
of relational systems

•	Build applications faster within
an agile data architecture

Learn	to:

Enterprise	
NoSQL

MarkLogic	Special	Edit
ionMaking	Everything	Eas

ier!™

Since MarkLogic was founded in 2001, the company has focused on building
a database platform that enables customers to capture more data and do
more with it. Customers gain an unmatched competitive edge through
game-changing technology that sets new standards in scalability,
enterprise-readiness, time-to-value, and innovation.

The world is seeing an explosion of data, including user-generated content,
machine-generated data, highly-structured heterogeneous data sources (patient
records, insurance claims, mortgage documents), raw data, social media, log
files, sensor data, and more. Relational databases weren’t designed—and
simply are not able—to deal with this variety and complexity in real-time. This is
exactly the problem MarkLogic has been solving for over a decade.

MarkLogic customers are solving challenges with Big Data applications that
were never imagined before. The Federal Aviation Administration depends
on MarkLogic as the backbone of its Emergency Operations Network. Royal
Society of Chemistry is building new applications in weeks. CQ Roll Call puts
up-to-date information about government-in-action at the fingertips of
its subscribers.

MarkLogic is headquartered in Silicon Valley with offices in Washington D.C.,
New York, Chicago, London, Frankfurt, Utrecht, and Tokyo.

For more information on MarkLogic, visit www.marklogic.com.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.marklogic.com

Enterprise
NoSQL

MarkLogic Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

by Charlie Brooks

Enterprise
NoSQL

MarkLogic Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies®, MarkLogic Special Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com, Making
Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without
written permission. MarkLogic and the MarkLogic logo are registered trademarks of MarkLogic. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in
the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub.
For information about licensing the For Dummies brand for products or services, contact Branded
Rights&Licenses@Wiley.com.

ISBN: 978-1-118-82900-4 (pbk); ISBN: 978-1-118-83261-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com
http://www.wiley.com/go/permissions
ddd
http://www.wiley.com/go/custompub
http://Dummies.com
mailto:Rights&Licenses@Wiley.com
mailto:info@dummies.biz

Table of Contents
Introduction .1

About This Book .. 1
Icons Used in This Book .. 2
Beyond the Book .. 2

Chapter 1: NoSQL 101 .5
Talking the NoSQL Talk ... 5
What NoSQL Is .. 7

Four database flavors .. 7
Key-value .. 7
Document ... 8
Column-family .. 8
Graph .. 8

Schema-agnostic .. 10
Free of complex joins .. 10
Horizontally scaleable ... 10
Compatible with commodity hardware 11
Self-contained ... 11

What NoSQL Isn’t ... 12
Just about the SQL query language 12
Only for huge enterprises ... 12
A drop-in RDBMS replacement 13
Dependent on specialized hardware 13
Intolerant of relational databases................................ 14

Is NoSQL Right for Your Business? .. 14

Chapter 2: What’s the Difference in DBMSes? 17
Comparing RDBMS and NoSQL .. 17

RDBMS fundamentals .. 18
NoSQL alternatives .. 19

Working on Your Relationships ... 20
RDBMS design .. 21
NoSQL design ... 22

Getting Back to Denormal ... 23

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition vi

Chapter 3: Going Beyond the Data Center
with NoSQL .25

Data Distribution .. 25
Sharding .. 26
Replication .. 27

Master/slave replication 27
Peer-to-peer replication 27

The ACID Test: Data Consistency .. 28
ACID constraints in NoSQL ... 29
Read and update consistency 29

Document Durability ... 30

Chapter 4: Seeing What Enterprise NoSQL Can Do . . .33
Enterprise Replication ... 34
Enterprise Data Backups ... 35
Multiple-Record ACID Transactions 36
Enterprise-Class Security .. 37

Authorization and accounting 37
Authentication ... 37
Access control.. 38
Compartment security .. 38

Policy Management.. 39
Administration and Management Tools 40
High Availability ... 41
Scalability .. 42
Integration with Third-Party Solutions 42

Chapter 5: Real-World Enterprise NoSQL 43
Consolidating Disparate Data ... 43

County government ... 43
Problem .. 44
Solution ... 45
Benefits ... 45

Investment banking ... 46
Sharpening Situational Awareness .. 46
Storing Operational Data .. 48
Discovering and Repurposing Data 49

Publishing ... 51
Broadcasting .. 51

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Table of Contents vii

Chapter 6: Ten Questions to Ask About
NoSQL Solutions .53

Are You Ready to Incorporate the Solution? 53
Is the Solution Agile Enough? ... 54
Does the Solution Meet Your Application

Requirements? .. 55
How Much Development Is Required to Get Data In? 55
Do You Need New Tools? .. 56
Does the Solution Support Your Cloud Strategy? 56
Is the Solution Enterprise-Ready? .. 57
Do You Need Specialized Hardware? 57
Will the Solution Grow with Your Business? 58
Can the Solution Speed Application Development? 58

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

viii Enterprise NoSQL For Dummies, MarkLogic Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. For details on how to
create a custom For Dummies book for your business or organization, contact info@
dummies.biz or visit www.wiley.com/go/custompub. For details on licensing the
For Dummies brand for products or services, contact BrandedRights&Licenses@
Wiley.com.

Some of the people who helped bring this book to market include the following:

Project Editor: Carrie A. Johnson

Acquisitions Editor: Connie Santisteban

Editorial Manager: Rev Mengle

Business Development Representative: Karen Hattan

Custom Publishing Project Specialist: Michael Sullivan

Production Coordinator: Melissa Cossell

Special Help: Adam Fowler, Blossom Coryat, and Norm Walsh

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com
mailto:BrandedRights&Licenses@Wiley.com
mailto:info@dummies.biz
mailto:info@dummies.biz

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Y
ou’ve probably heard about NoSQL, and you may wonder
what it is. NoSQL represents a fundamental change in the

way people think about storing and accessing data, especially
now that most of the information generated is unstructured
or semi-structured data — something for which existing data-
base systems such as Oracle, MySQL, SQLServer, and Postgres
aren’t well suited.

NoSQL casts a very wide net (trying to offer a precise defini-
tion of NoSQL is like trying to nail gelatin to a tree). Search
for NoSQL databases on the Internet, and you’re likely to
find some common themes, such as non-relational, horizon-
tally scalable, and (mostly) schema-agnostic. But what does
that mean? NoSQL means a release from the constraints
imposed on database management systems by the relational
database model.

About This Book
Enterprise NoSQL For Dummies, MarkLogic Special Edition,
provides an overview of NoSQL. You start to understand what
it is, what it isn’t, when you should consider using a NoSQL
database instead of a relational database management system
(RDBMS) and when you may want to use both. In addition,
this book introduces enterprise NoSQL and shows how it dif-
fers from other NoSQL systems.

NoSQL may not be a solution for every data storage problem.
Also, not all NoSQL databases are created equal, or even
equel. (Sorry — a little database humor there.) Though I cer-
tainly hope that you read the book cover to cover, the book
is organized in such a way that you can sample the chapters
that you find most interesting and useful in whatever order
you want.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 2

Icons Used in This Book
Every once in a while in the body of the book, you see an icon
in the left margin. Each icon indicates a particular paragraph
or two that you should pay attention to.

 Tips help save time or minimize frustration about a particular
product or procedure. You could save more or learn a new
way of doing something.

 Remember icons represent information that you file away in
your brain, even if you remember nothing else.

 Warning icons represent serious situations involving risk to
your work products or your organization’s overall operations.
Heed the information here to avoid some pitfalls of NoSQL.

 Technical Stuff is information that you don’t need to know
unless you want a deeper understanding of what’s under the
hood. Feel free to skip these paragraphs, but come back to
them later if you want to know more technical information
about how NoSQL works.

Beyond the Book
While you’re reading this book, you may be thinking, “Are there
really databases that can do x, y, or z?” The answer is yes, they
can, and those databases do exist.

Then you may think, “But that work may take rafts of develop-
ers and architects to configure and to get data into the data-
base.” In fact, that’s not true either — it’s easy to put data
into the database in seconds and search that data instantly.
You can even get search results from within attachments. It
doesn’t take eons to connect the data to an application or
build a new application.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Introduction 3
Enterprise NoSQL For Dummies, MarkLogic Special Edition, can
help you discover more about enterprise NoSQL, but if you
want resources beyond what this book offers, I have some
insight for you:

 ✓ MarkLogic is an enterprise grade NoSQL database. It has
customers who use its services and are building new
applications in weeks and months, instead of years. Check
out testimonials here: http://po.st/tst4d.

 ✓ Try it for yourself. Search for content in one of the over
67 million emails or attachments in MarkMail. Go to
http://markmail.org.

 ✓ Download MarkLogic and see what it can do with your
data. Visit www.marklogic.com.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://po.st/tst4d
http://markmail.org
http://www.marklogic.com

Enterprise NoSQL For Dummies, MarkLogic Special Edition 4

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

NoSQL 101
In This Chapter
▶ Understanding some key NoSQL terms

▶ Seeing what NoSQL is — and isn’t

▶ Deciding whether NoSQL can benefit your business

N
oSQL isn’t truly new (although some of the software
 certainly is). Folks were defining and using database

structures other than a relational database management
system (RDBMS) back in the 1980s. What is new are the
 challenges introduced by Big Data.

 Big Data is a large and complex collection of data sets that
occurs because of the velocity, volume, variety, and complex-
ity of the data. The challenge this creates includes capture,
curation, storage, search, sharing, transfer, analysis, and
visualization.

NoSQL isn’t so much an advance in technology (aside from
the development of commodity computers) as it is a way
of matching database performance and capability to
application demands and giving users the ability to use
data sources they never thought they could access. Using
NoSQL requires a change in mindset, moving from the
RDBMS model to one designed to best support application
queries. This chapter helps prepare you for that change.
I cover what NoSQL is about and address some common
misconceptions.

Talking the NoSQL Talk
When you start exploring NoSQL, you may be hit by a barrage
of new terms or terms used in a way that you don’t understand.
Fear not, dear reader: This section gets you caught up with

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 6
NoSQL terminology. Soon, you’ll be discussing sharding and rep-
lication with the best of them.

 First, though, I’m sure you wonder how to pronounce NoSQL.
I’ve heard it pronounced as no sequel and as no S-Q-L. My
advice: Listen to how the people you’re interacting with pro-
nounce it, and copy them.

 Here are some important NoSQL terms:

 ✓ Node: A node is a networked computer that offers some
kind of service (usually a compute service), local stor-
age, and access to a much larger distributed data or file
store.

 ✓ Clusters: As used in NoSQL land, a cluster is a set of nodes
that constitute a single unit. Depending on the database,
a cluster can be a set of nodes on a particular rack in the
data center or nodes that are in the same row as other
nodes. I talk more about “rack versus row” in Chapter 3.

 ✓ Sharding: Sharding (also called horizontal partitioning)
involves partitioning the database on the value of some
field. This is done by some NoSQL databases to equalize
the amount of data between nodes. You can do shard-
ing directly by hashing the key value or by load balanc-
ing — directing each node to redistribute its data to
another, less heavily loaded node (see Chapter 3).

 ✓ Replication: Replication is the mechanism that provides
database availability. Portions of a database are written
to multiple nodes so that if one node fails, another node
contains a replica of the failed node’s data. For details on
replication, see Chapter 3.

 ✓ ACID: ACID stands for atomicity, consistency, isolation, and
durability. ACID is a watchword in transactional systems
(such as those used in banking and e-commerce) and neces-
sary for any system of record. I discuss ACID in Chapter 3.

 ✓ BASE: BASE stands for basically available, soft-state, and
eventually consistent. Basically available indicates that
the database may not be available 24/7. Soft state implies
that the state of the database may be inconsistent; if you
change your work email address, for example, a friend
may not see that information immediately. Eventually con-
sistent, however, means that your friend eventually sees
your changed email information.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: NoSQL 101 7

What NoSQL Is
NoSQL can represent several things in the data management
world. In the following sections, I discuss a few of its features.

Four database flavors
NoSQL represents a much different data model from earlier
models, such as hierarchical (which represents relationships
in a strict hierarchy) and network (which represents many-to-
many relationships by introducing the notion of record sets). An
RDBMS represents relationships (entities) as tables, with each
row (tuple) representing a particular entity and each column
representing an attribute of that entity. Unlike earlier models, the
relational model allows only single-valued attributes. If you want
to indicate that a particular entity is related to multiple other
entities, you have to create a separate table to express that rela-
tionship. You can’t nest one tuple within another — a process
known as repeating groups.

Although NoSQL databases frequently refer to tables, rows,
and columns, those terms don’t have the same meaning or
restrictions as they do in an RDBMS. Check out Table 1-1 for
an explanation of how those terms are used in NoSQL.

Table 1-1 RDBMS Terms versus NoSQL Terms
RDBMS Term NoSQL Term
Partition Shard

Table Document root element (JSON/XML)

Row Document/aggregate or record

Column Element/attribute or field or property

NoSQL comes in four main flavors, which I discuss in the fol-
lowing sections.

Key-value
Key-value databases model data as a search/index key and a
value represented as an uninterpreted sequence of bytes. This
kind of database has been around for many years. You can
quickly and easily read a given record based on its key, but
you can’t search value data across multiple records.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 8
One example of a key-value database is one in which the
key is the URL of a given web page, but the contents can be
expressed as HTML, PHP, JavaScript, or even binary data.

 Key-value databases usually require a unique key. They have
no implicit ordering, but some implementations allow you to
order the database by the value of the key, thereby enabling
range searches against the key.

Document
Document (sometimes called aggregate) databases are very
much like key-value databases, except that the value associ-
ated with a key contains structured or semi-structured data,
which can be labeled as a document. Unlike in a key-value
database, you can query against the structure of the docu-
ment as well as elements within that structure, and return
only portions of the document as the results of the query.

An example of a document-oriented database is a book data-
base in which the key is the book title and the value is book
metadata expressed as an XML document.

Column-family
Column-family databases can be the most difficult kind to
wrap your head around. One way to think about these data-
bases is that they’re very large tables with zillions of rows
and zillions of possible columns, but each row actually has a
relatively small number of columns compared with the total
number possible. Mathematicians recognize this arrangement
as a sparse matrix; programmers may recognize it as a hash
table or dictionary mapping a key to a set of key-value pairs.

An example of such a database is one in which the key is a URL
and each column represents a revision of the document. One
column-family contains metadata about that page; another
 column-family contains data about when the page was modi-
fied, what was changed, the extent of the change, and so on.

Graph
Graph databases are different from the preceding three types
(see the preceding sections) in that the relationships among
the various entities are the most important things. Nodes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: NoSQL 101 9
in the graph represent a particular kind of entity (person or
thing), and the edges between nodes are labeled as particular
kinds of relationships. Edges point in one direction, and an
edge itself may have attributes. Take a look at Figure 1-1 for an
example of this type of database.

Figure 1-1: A graph database example.

As an example, consider the “following” relationship in the
Twitter messaging system. You can represent a relationship
between Charlie and Chris by saying that Charlie follows
Chris, but that doesn’t mean that Chris follows Charlie. You
can represent these relationships as pairs, as in

Follows (Charlie, Chris)

A triple is a single piece of information, known as an assertion.
An example is

Charlie, follows, Chris

Over time, grouping these individual assertions together
builds a web of facts. This is the technology that the semantic
web is built on.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 10

Schema-agnostic
Given that a NoSQL database has no tables, rows, or columns
in the same sense as these elements are used in relational
databases, you shouldn’t be surprised to discover that NoSQL
databases don’t have a notion of a fixed schema, either.

Free of complex joins
NoSQL databases are designed so joins aren’t necessary
or even recommended. If for some reason they’re needed,
choose a database, such as MarkLogic, that can perform com-
plex joins.

Horizontally scaleable
As you make more and more demands of your database, you
eventually run out of a particular resource, whether it be pro-
cessing power, storage space, input/output (I/O) cycles, or
whatever. At that time, you have a choice to make: Scale up
(vertically) by buying later and more powerful hardware, or
scale out (horizontally) by buying a new machine of compa-
rable power.

NoSQL favors the latter approach, and NoSQL databases make
the job of incorporating new machines into their database
clusters easy.

Triple your fun
Here are a few other examples of
triples:

Paul worksFor marklogic

Alex worksIn.
Marketing

London isIn England

Oracle isA.
Relational Database

Document databases Are
awesome

Horse Riding typeOf
sport

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: NoSQL 101 11

Compatible with commodity
hardware
In part because of the design goal of supporting horizontal
scalability (see the preceding section), most NoSQL database
systems run on commodity hardware. Commodity hardware
isn’t always inexpensive, however. Recommendations for
nodes include lots of memory (16GB or more), multiple CPUs,
and a lot of disk space.

 One recommendation for a particular machine for a cluster
was two quad-core CPUs (2 to 2.5 GHz), ECC RAM (16GB to
24GB), four 10x 600GB SATA disks, and a 1GB Ethernet card.
Even today, that machine would cost more than $2,000. On the
flip side, a single machine with 10 times the power would cost
much more than 10 machines at $2,000 each.

Self-contained
Many database systems share resources, including storage,
processor resources, and memory. The NoSQL philosophy, how-
ever, is that nothing is shared. Each node is stand-alone with
respect to storage and processing power, so queries can run on
a particular node without being blocked by another query that
locked some portion of the database for its own purposes.

That said, it requires good design and good engineering to
provide careful sharding of the database (see Chapter 3) so
that queries can run in parallel without interference. This
model of passing queries to all nodes and then combining the
answer is similar to the MapReduce technique, with the dis-
tinction that NoSQL systems return a live operational result,
whereas MapReduce systems such as Hadoop operate only in
batch mode. Some NoSQL databases provide record sharding
automatically, but not all of them.

 Not all NoSQL databases run across multiple machines. Graph
databases, for example, usually are restricted to a single
machine because graph math across nodes is slow.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 12

What NoSQL Isn’t
Even though NoSQL arrived relatively late on the database
scene, enough time has passed for various misconceptions
to flourish. When you advocate for a NoSQL solution, you
may hear questions such as “Well, isn’t NoSQL only . . . ?” or
“But doesn’t NoSQL just do . . . ?” This section gives you good
answers to those types of questions.

Just about the SQL
query language
Whether you pronounce NoSQL as no SQL or not only SQL (see
“Talking the NoSQL Talk” earlier in this chapter), NoSQL isn’t
concerned about the presence or absence of the SQL query
language. Rather, NoSQL is concerned about whether and
when the guarantees and restrictions of the relational data-
base model (see Chapter 2) are necessary.

In many cases, NoSQL doesn’t offer stand-alone query lan-
guages. Instead, the database is accessed via an application
programming interface (API).

 Some NoSQL databases don’t allow string-based queries
(such as Select * from Orders where itemname =
"pillows"). The Hive query language for Hadoop uses a
decidedly SQL-like syntax, and the Cassandra database pro-
vides the CQL (pronounced C-quell — get it?) query language,
which looks a lot like SQL.

Only for huge enterprises
Many large companies associated with the cloud (I bet you
wondered how long I could go without using that word) use
NoSQL databases because they depend on a wide variety of
complex, fast-moving data. Yahoo!, Google, and Amazon, for
example, all started developing a non-RDBMS in the early
2000s to meet their business needs. These business needs
are characterized by Big Data: a lot of variable, constantly

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: NoSQL 101 13
changing data, with query results required very quickly. (After
all, slow response means that customers will leave for other
businesses.)

Yet NoSQL isn’t just for large companies. Even small compa-
nies may need NoSQL because they’re trying to consolidate
their data and remove data silos for structured and unstruc-
tured data. Your business may operate on a much smaller
scale, but you don’t need to have petabytes of data to have
a Big Data problem. Your Big Data problem could be how
to extract patterns and relationships from unstructured or
semi-structured data to gain relevant, actionable information
about your business, as well as how to access that informa-
tion quickly so your business can adapt to rapidly changing
conditions.

A drop-in RDBMS replacement
A NoSQL DBMS isn’t a drop-in replacement for your existing
RDBMS. An RDBMS has been developed since the 1970s, and
includes many facilities to ensure data is kept safe, including
ACID guarantees and indexing for performance.

If you’re working with a system of record in an online transac-
tion processing environment with hundreds of transactions
per second, for example, there’s no reason to rip out that
system and start afresh. The truth is, NoSQL is a disruptive
technology, not only because of its different perspective on
data storage and management, but also because it requires
a different skill set for database specialists and application
programmers.

Dependent on specialized
hardware
NoSQL doesn’t require specialized hardware to perform well
unlike an RDBMS that uses vertical scaling. At some point,
vertical scaling (adding bigger and bigger iron) requires cer-
tain functions to be offloaded to special-purpose devices,
which increase complexity, power consumption, physical
floor space, and so on. With NoSQL, you add more commodity

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 14
servers, making managing expansion easier with NoSQL
instead of an RDBMS. Also many NoSQL solutions can run in
the cloud, further improving elasticity options of increasing
and decreasing the number of servers at short notice.

Intolerant of relational databases
Choosing a NoSQL database isn’t a matter of throwing out the
RDBMS baby with the NoSQL bathwater. Using a relational
database in tandem with a NoSQL database can be tricky, but
it can make business sense. This is true even if the NoSQL
database is updated via an ETL (Extract, Transform, and
Load) process that runs periodically or in parallel with que-
ries against that database.

One example of combining the two types of databases is using
company information or reference data on exchange rates to
enrich trading databased as XML documents in the NoSQL
database.

Is NoSQL Right for Your
Business?

If you’ve been reading this chapter from start to finish, you may
think that all the preceding information is nice, but you may
still wonder how NoSQL could make a difference in your busi-
ness. This section gives you the lowdown on how.

You may be a candidate for NoSQL if

 ✓ You have a lot of unstructured or semi-structured data,
or a mix of unstructured and relational data.

 ✓ You need to support multiple queries while simultane-
ously loading a lot of data.

 ✓ You need to reuse portions of your data for multiple
projects.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: NoSQL 101 15
 ✓ You have rapidly changing schemas or need to take on

new information sources without a six-month (or longer)
development cycle.

 ✓ You need to consolidate multiple, disparate data types
and sources without being forced to model data or create
a schema.

 ✓ You don’t know what queries you want to be able to ask
of your data.

 ✓ You need to be able to search for the contents of a
document.

If these descriptions fit your business, a NoSQL solution may
be right for you.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 16

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

What’s the Difference
in DBMSes?

In This Chapter
▶ Differentiating between relational and NoSQL data modeling

▶ Handling relationships

▶ Understanding (de)normalization

T
aking full advantage of any product or solution requires
preparation and the proper mindset. To get the most out

of it, you have to change the way you think about it. To get
the most from a database management system (DBMS), you
have to change your mind-set about managing data. “Yeah,”
you’re saying skeptically, “but data is data.” Stop right there.
If you’re about to say something like “A NoSQL database can’t
be that different from a relational database,” you’re wrong.

This chapter helps you grasp the differences between a rela-
tional database management system (RDBMS) and a NoSQL
DBMS.

Comparing RDBMS and NoSQL
What, then, are the key features that differentiate an RDBMS
and NoSQL? At one time, IT professionals may have said
that an RDBMS emphasizes consistency and a NoSQL DBMS
emphasizes availability, but that’s no longer the case. The real
differences now center on flexibility (schema-agnostic) and
methods of handling different data structures.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 18
NoSQL databases and relational databases offer different capa-
bilities and guarantees. Just as you won’t get the performance
you want if you drive a Ferrari in rush-hour traffic, choose one
or the other type based on your application requirements.

 If you’re dealing with structured data that’s highly transactional,
an RDBMS is probably the way to go. Or you might consider
splitting database management, with an RDBMS managing the
structured data and a NoSQL solution managing the unstruc-
tured data. The latter type of system, called polyglot persistence,
will be a key solution until NoSQL databases support multiple
data structures (as MarkLogic is doing for documents, values,
and triple structures; see Chapter 1).

 Design your data management architecture and systems to
play to the strengths of both types of solutions. You probably
don’t want to limit your choice of NoSQL solutions to only one
model. After all, triple stores and document databases serve
different purposes, and using the right tool for the right job
still applies.

 MarkLogic provides both triple stores and document data-
bases, so if you don’t want to limit your choices, check into
MarkLogic’s solution.

RDBMS fundamentals
Anyone who works with an RDBMS is familiar with the table
as a basic way of handling RDBMS data. Here’s the structure:

 ✓ Rows represent records, and columns represent record
attributes or fields.

 ✓ Every row in the same table has exactly the same columns,
although some columns may not always have a value
(and, therefore, are called null valued).

 ✓ Each row of a record is identified internally by a special
key, even if that key isn’t visible to developers.

 ✓ Each row in the table usually is unique, identified exter-
nally by a primary key (often, a specific combination of
fields or a single field).

 ✓ An index usually is created on the key and any common
lookup field to allow faster lookups.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s the Difference in DBMSes? 19
 ✓ Each field in the table has a single value. Field names

must be unique as well. There are no repeating groups or
hash maps within a table.

So far, so routine.

The whole purpose of designing the database this way is to pre-
vent update anomalies. The principle is “One fact in one place.”
You have to access only one record to change a particular value.
If you want to change your phone number from 1-413-555-1212
to 1-617-444-1212, for example, you should be able to make that
change in one field of one specific record — not require that all
data in a record be resubmitted just to update a single field.

 One consequence of this approach to designing RDBMS tables
is that problems crop up as soon as you need to express rela-
tionships among the entities, as you see in “Working on Your
Relationships” later in this chapter.

NoSQL alternatives
SQL changed the RDBMS scene by offering organizations an
alternative method of storing and managing their data. But
why choose yet another alternative — NoSQL — instead?
Here are two major reasons:

 ✓ NoSQL represents a practical change in perspective.
Instead of getting the schema just right before doing
anything else, NoSQL advocates loading up the data and
seeing where the problems are. This problem-oriented
approach focuses on how the data will be used (queried)
instead of on how the data must be structured to fit an
existing RDBMS.

 ✓ NoSQL models data in a way that’s more understand-
able to mere mortals. Almost anyone can look at a
document and make sense out of it. An XML document
clearly indicates what each piece of the document is. The
RDBMS tables necessary to represent that document are
more difficult to understand, and deriving the business
rules from the schema is difficult.

As I mention in Chapter 1, a NoSQL is schema-agnostic. You
can enforce a schema if you want to, but you usually don’t
have to.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 20
 Keep in mind the following NoSQL facts:

 ✓ NoSQL documents don’t require each document to have
the same attributes.

 ✓ NoSQL is explicitly aware of how data will be used in a
particular application.

 ✓ At the physical database level, NoSQL is aware that it
runs in a cluster and takes that fact into account in its
data management strategy.

 ✓ NoSQL applications can specify a replication factor to
ensure a particular level of consistency.

The rest of this chapter provides some concrete examples of
the differences between an RDBMS and NoSQL.

Working on Your Relationships
A relationship between database entities may require a
separate table to represent that relationship. If you have a
one-to-one (1:1) relationship between two entities, you can
represent this relationship by embedding the key for one
entity in the record for the other entity. You can use the same
strategy to represent a one-to-many relationship (1:M). If you
have a many-to-many relationship (M:M), you need a separate
linking table.

The headaches you have to deal with depend on the type of
relationship. Here are a couple of considerations:

 ✓ Referential integrity: A database constraint called ref-
erential integrity (data consistency) requires a foreign
key, if not NULL, to indicate an entity that already exists
in the database. But if you use NULL, you’re indicating
that the relationship doesn’t exist yet. Therefore, if you
want to embed a foreign key in a record, you first have to
create the record, using that value as a primary key. That
table may have its own referential integrity constraints,
however.

 ✓ Mapping tables: A 1:M relationship may require you to
create a mapping table in the database to capture that
relationship between these two entities. Otherwise, you
can achieve the same results by embedding the key for
one entity in the table that represents the other. If you

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s the Difference in DBMSes? 21
use a mapping table, it can consist of just the keys of
each entity, representing that one entity is associated
with another. In other cases, this relationship table may
have attributes that tell you something more about that
relationship.

 A M:M relationship, by contrast, requires a mapping table
to represent that relationship.

 ✓ Object orientation: Object-oriented databases that create
object-relational mapping between objects and their
 representations in RDBMS tables don’t always work too
well. Which is more important: the objects or their rela-
tionships? The answer depends on whom you ask and
the purpose for which the database is used. In database
programming, the object view of the world and the rela-
tional view of the world have always been at odds.

Consider an example. Suppose that you need to create a
database to capture information about a college: students,
professors, courses, classes, classrooms, and the like. Further
suppose that each class can have only one professor. In the
following sections, I show you how you could design this
database for an RDBMS and then how you could create a
NoSQL version.

RDBMS design
For this example, your RDBMS table definition may look some-
thing like this:

create table class {
 section varchar(10) NOT NULL,
 class_id Integer NOT NULL UNIQUE,
 professor : Integer,
 Primary key(class_id),
 Foreign key (professor) references
Professor}

 This design decision may not be acceptable to everyone. In
particular, it can require the use of a value representing NULL
in the class record, meaning that a professor hasn’t been
assigned to this class. Dealing with NULLs complicates life for
the application programmer, but sometimes, NULLs are neces-
sary evils. Some NoSQL databases permit document values to
be NULL or simply make them not present. I discuss this topic
further in the following section.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 22

As a programmer, you could create a student’s record
with s1 = new Student() and delete the record with
s1.delete().This seemingly simple transaction, however,
involves making changes in multiple tables and requires the
database to manage concurrent access to all these tables to
maintain referential integrity across the database.

A table describing a student in an RDBMS might look like this:

create table student {
 name : string ,
 student_id : integer NOT NULL,
 year : integer,
 Primary Key (student_id)}

To represent that a student can be enrolled in multiple
classes, you need to create a new table representing the rela-
tionship between a student and a class:

create table student_class {
 student_id integer NOT NULL,
 class_id integer NOT NULL,
 primary key (student_id, class_id)}

NoSQL design
A NoSQL developer would approach the example design
differently, using different names for various database com-
ponents. In NoSQL, documents don’t have to have the same
set of attributes and can have attributes that don’t exist yet.

Empty lists versus null values
Representing a student’s classes as
an empty list means that you don’t
have to worry about null values for
enrollment. You still face the issue
that a student may be enrolled in a
class to which no professor has been
assigned. In this case, you can use
NULL to indicate that no professor
has been assigned to teach this class.

Which choice is better? Here’s a rule
of thumb: A null value is better if the
document attribute is a single value,
whereas an empty list is better if the
attribute can have multiple values.
A student can be enrolled in 0, 1, or
more classes, so the empty list is
more appropriate.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s the Difference in DBMSes? 23
Using a NoSQL approach, the student record would look
something like this:

<student xmlns="http://myeducation.
com/education" studentId="5"
year="2014">

<student-name>Joe Bloggs</student-name>
<class classId="CSC101">
<professor professorId="456">
<professor-name>John Adams</professor-name>
<tenured>true</tenured>
<yearsEmployed>23</yearsEmployed>
</professor>
<section>Introduction to Computer Science

</section>
</class>
<class classId="POL245">
. . .
</class>
</student>

Getting Back to Denormal
Normalizing, in the RDBMS world, is the act of performing
a series of transformations on a database design until the
design meets certain tests. Each of these tests describes a
particular normal form. There are several kinds of normal
forms, including 1NF (1st normal form), 2NF, 3NF, 4NF, and
BCNF (Boyce-Codd normal form). Depending on your data, the
first three forms may be sufficient.

Sparse data
Some applications, such as contact
lists, have hundreds of fields (home
phone, cellphone, email, Twitter ID,
and so on), but normally, only a few
of these fields are filled out. As a
result, many rows of a contact table
contain null values. This scenario,
called a sparse-data problem, results

in waste in an RDBMS. NoSQL data-
bases, by contrast, allow you to store
or not store information for a particu-
lar field, key, or element. Therefore,
they don’t suffer from the sparse-
data problem associated with an
RDBMS.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 24
You start with a table that contains all the information that
you want to retrieve from the database. To continue the
 college-database example from earlier in this chapter, a student’s
report card might contain several pieces of information: age,
name, a list of classes, class names, teacher names, and so
on. This table probably contains duplicate elements, such as
class names, class identifiers, and teacher names. Therefore,
you need to break certain fields into separate tables via
normalization.

The process of gathering data into a single logical table is
called denormalizing, and denormalizing improves query
performance. NoSQL databases that are designed to support
queries from the start often denormalize the data based on
the anticipated queries to be made against that database.
The student/class example illustrates the issue: Should you
make Classes a separate document collection, or should you
embed the Class information in the Student document?

If you design a database by thinking about the queries instead
of thinking about the data, you may decide that because most
of the application queries concern students, embedding the
class information in the student document makes sense. You
must also consider whether the student is enrolled in a large
number of classes (and large is determined in part by any
restrictions placed on the size of a particular document). On
the other hand, if you expect many queries that concern only
classes, you may create Class as a separate collection.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Going Beyond the Data
Center with NoSQL

In This Chapter
▶ Seeing how NoSQL distributes data

▶ Making sure that data is consistent

▶ Keeping document contents durable

E
ven though data centers are familiar features of enterprise
computing, they’ve always had some drawbacks, espe-

cially in the early days. To support large databases, NoSQL runs
on a large number of networked servers organized as clusters
(even if the servers are mounted in the same rack in the same
server room). Now, granted, some problems can arise when
you distribute data across multiple machines. For both a rela-
tional database management system (RDBMS) and a NoSQL
database management system (DBMS), maintaining availability
and consistency across multiple servers continues to be a chal-
lenge. This chapter looks at how NoSQL meets that challenge.

Data Distribution
Data is primarily distributed in two ways:

 ✓ Sharding — different data on different nodes

 ✓ Replication — copying the data to multiple nodes; repli-
cation can be either peer-to-peer or master/slave.

With NoSQL, you can use sharding or replication, or both.
Different NoSQL databases provide different functionality.
This section describes some common approaches.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

26 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Sharding
Sharding (also called horizontal partitioning) involves partition-
ing the database on the value of some field. Various documents
in the database are stored on separate machines based on the
value of that field, but sometimes, an application that accesses
the database makes that decision; other implementations place
an intermediary between the application and the databases
running on the remote nodes. Some NoSQL databases require
the admin to configure sharding rule; others will automatically
rebalance data across nodes proactively. The downside of man-
ually configuring rules is that you may inadvertently have an
imbalance of data between nodes. This could result in a slower
response time from some nodes. An RDBMS supports partition-
ing, but usually, the partitions remain on a single machine (in
the form of particular disk partitions).

You can use various techniques to partition your NoSQL
database:

 ✓ Use a key value to shard your data. In this approach,
for example, all customers who have their home offices
in California are stored on a node in your California data
center.

 One way to store data in this way is to use range parti-
tioning. In range partitioning, specific ranges of data are
stored on special servers that you can consult to see
which servers are responsible for which ranges.

 ✓ Use load balancing to shard your data. In this scenario,
a database may split a large shard into a series of smaller
shards that run on multiple machines. This process may
not be visible to the application developer because the
DBMS makes the decision regarding performance.

 ✓ Hash the key. In this scenario, the key value is mathemati-
cally transformed to (ideally) a shorter value. Consistent
hashing assigns documents with a particular key value to
one of the servers in a hash ring (a collection of servers,
each of which is responsible for a particular range of hash
values). Again, the details are hidden from the application
programmer.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Going Beyond the Data Center with NoSQL 27

Replication
NoSQL uses two forms of replication: peer-to-peer and master/
slave. Both methods have problems with consistency, but for
different reasons. That’s why, if you can implement a solution on
a single machine, you may want to do exactly that and use more
traditional means (such as backups) for database recovery.

Certain NoSQL databases, especially graph databases (see
Chapter 1), are quite happy to live on a single server. They’re
still vertically scalable but can perform queries only on a single
node. A change is committed to a single node, and that change
is replicated to other nodes. Because most NoSQL databases
are intended to run in a cluster, you may face replication issues
sooner or later. Usually, this is eventually consistent (see the
discussion of ACID and BASE in Chapter 1), so some nodes lag
in passing that data back in query results.

 Eventually consistent means the state of the database isn’t con-
sistent until the change is committed to the replica node.

Master/slave replication
Replication is simpler in a master/slave configuration: All modi-
fications are made on the master node, and these changes are
pushed out to the slave nodes. A problem occurs if the master
fails before the slaves are modified; then the slaves elect a new
master, and updates continue. When the old master is brought
back, conflicting changes may need to be reconciled, especially
if multiple nodes are updating the same partition. In the best-
case scenario, the master handles all writes, and reads can be
shared across the slave servers. With that said, master/slave
reconciliation isn’t needed if the NoSQL server promotes a
replica to the new master and is ACID compliant — and then no
inconsistencies are possible.

Peer-to-peer replication
Peer-to-peer replication means that no master node exists:
Any node can accept reads or writes. Writes are propagated
to each peer, and reads can occur from any of the servers.

 Replication is the workhorse of many NoSQL databases. But
the main problem in replicating the database on multiple nodes
is that these replicas can become inconsistent. Consistency
becomes an issue when two users update the same document

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

28 Enterprise NoSQL For Dummies, MarkLogic Special Edition

at the same time on different peers. A read inconsistency can
occur if an update to a documented hasn’t propagated from
one peer to another: One person sees one value returned, and
another person sees a different value. Trouble? That depends.

An example of inconsistency could be comment counts on
blog posts. The count could be different for different people.
With low-value data, that may not be a problem. However,
an inconsistent view of inventory may cause a problem.
For example, if one person sees one count and the other is
actually lower, you may be surprised when you run out of
inventory.

The RDBMS solved this problem a long time ago by using jour-
nals and log shipping among clusters. Some NoSQL solutions
are starting to provide this feature, but you may have to con-
sider handling the problem in application development.

The ACID Test: Data Consistency
ACID is a way to structure a database to keep transactions
reliable. The acronym is short for atomic, consistent, isolated,
and durable, as follows:

 ✓ Atomicity means that the effect of the transaction is
atomic — that is, all or nothing. If one part of the trans-
action fails, all parts fail, and the state of the database is
unchanged.

 ✓ Consistency means that a transaction causes the database
to transition from one valid consistent state to another
consistent state.

 ✓ Isolation means the end user sees results as though each
transaction operated in isolation, even though many
transactions may be operating in parallel.

 ✓ Durability means that when a transaction succeeds, the
database guarantees that the results of that transaction
appear in the database regardless of any other system
malfunction.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Going Beyond the Data Center with NoSQL 29

ACID constraints in NoSQL
Most NoSQL databases relax ACID constraints. A NoSQL
database may guarantee that an update of an individual docu-
ment is atomic — that is, it happens or it doesn’t. No such
 guarantees can be made, however, if the logical transaction
requires updates to several collections (tables) within the
same database, not even if the database is running on the
computer that holds the data.

When you work in a distributed computing environment, you
have to balance your need for consistency, availability, and
durability. To provide high availability, some, but not all, data-
bases will relax constraints on consistency and durability.

In practice, partition tolerance is required (and even unavoid-
able) in most NoSQL databases because a database has to
function in some capacity as much as possible. That leaves
two properties to be compromised: availability of data and
consistency of replicas.

 The RDBMS wasn’t ACID when it was originally created. It
added ACID support over time. NoSQL databases are also fol-
lowing this trend. MarkLogic and FoundationDB provide ACID
consistency.

Read and update consistency
Consistency, for a NoSQL DBMS, means update and read con-
sistency. In the RDBMS ACID approach to database design, the
goal is to make sure the data in the database remains consis-
tent internally. In a college database, for example, when a stu-
dent transfers from one section to another, consistency means
that you see the student in one section or another, but never
both. Otherwise, the student isn’t enrolled in the class.

Here’s some further explanation:

 ✓ Read consistency means that two readers see the same
data after an update. An RDBMS achieves this task via
transactions. A NoSQL database using replication, how-
ever (see “Replication” earlier in this chapter), can have
a delay — the inconsistency window — before all replicas
are updated. This approach is called replication-consistent.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

30 Enterprise NoSQL For Dummies, MarkLogic Special Edition

 ✓ Update consistency means that when two modifications
are issued simultaneously, one update succeeds, and the
other is notified that the record it’s trying to update has
been modified since the last read. This approach is called
update-consistent.

 ✓ The classic case of update consistency looks like this:
Charlie checks out the file foo.c to fix a bug. Gordon
checks out the same file to fix another bug. Charlie sub-
mits his changes first; then Gordon submits his changes.
Who wins? Gordon should be notified that changes
were made in the original file after he checked it out for
modification.

Document Durability
Durability represents whether a modified document is stored
permanently when an update is finished. In a NoSQL database,
durability usually is implemented via replication (discussed
earlier in this chapter). Eventually, all nodes in the cluster need
to have identical copies of the data, because a read operation
could be served by any of the replicas and needs to get the
same data from all of them.

The number of nodes required to ensure a consistent read is
called the replication factor. Some nodes in a cluster are partici-
pating in replication. Of those nodes, you need some number
of nodes to respond to an update (a write request) and some
number to respond to a query (a read request). The replication
factor is the number of nodes that need to participate to guar-
antee consistency.

In master/slave replication, you need to have only one node —
the master — respond to an update, because you trust that
the changes will be sent to the slave nodes.

If you have multiple readers (R) and writers (W) participating
in replication, you need to have more than half the total
number of nodes (N) respond to the update to guarantee
that the data has been saved. This situation is called a write
quorum (W > N/2). A database designer can play with these
numbers to achieve different effects, such as read consistent,
always consistent, or eventually consistent.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Going Beyond the Data Center with NoSQL 31
 Some math here: The strongest consistency (N = 3, W = 3, R = 1)

guarantee occurs when the number of writers equals the number
of nodes performing replication. If N = W, every server needs to
confirm the write before the write is acknowledged back to the
application. By definition, therefore, all machines are in sync.
Eventual consistency occurs if W = 2 and R = 1 and N = 3 (a write
quorum). When the third node rejoins the set, it ’s updated
based on the data written to the other two nodes.

In a traditional RDBMS installation, durability is achieved by
having the underlying database engine ensure that the write
has succeed. Another technique ensures that the transaction
has been saved to a journal file. This file contains a list of
transactions that have been applied to the database since the
last update was written to disk. If the database crashes before
the update is written to disk, the journal file can be replayed
against the database when it restarts to bring the database
back into sync.

 Some NoSQL DBMSes, such as MarkLogic’s, offer journaling
capability. If you’re running mission-critical applications and
need a guarantee that each transaction is committed, take a
look at ACID-compliant NoSQL databases.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

32 Enterprise NoSQL For Dummies, MarkLogic Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Seeing What Enterprise
NoSQL Can Do

In This Chapter
▶ Defining enterprise NoSQL

▶ Using replication

▶ Backing up data

▶ Ensuring data integrity

▶ Spotlighting critical security matters

W
ithout question, NoSQL databases have proved their
worth in enterprise computing. The earliest examples

of databases that came to identify the NoSQL movement —
Google’s BigTable and Amazon’s Dynamo — were used by
the world’s largest search enterprise and the world’s largest
online retailer.

Using NoSQL for internal data management for business intel-
ligence, however, is different from using it for customer-facing
applications. If you plan to use a NoSQL database management
system (DBMS) for mission-critical projects, you need to con-
sider the costs across the entire useful life of those projects.

In this chapter, I discuss enterprise NoSQL — a type of NoSQL
DBMS that provides enterprise-class performance, security,
and reliability. Enterprise NoSQL should be the kind of DBMS
on which you’d be comfortable betting your business. For
that reason, it needs to offer the capabilities listed in this
chapter.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 34

Enterprise Replication
Replication (see Chapter 3) helps many an enterprise achieve
its goals, including high availability, robust disaster recov-
ery, and fast performance. Replication makes demands on
an enterprise’s data and communications infrastructure,
however.

At its base, replication occurs when a master database — the
database being replicated — creates a copy of a new or
updated document in a replica database.

 Many NoSQL databases also provide something called local
disk replication. This replicates data within the same cluster
to different nodes. Depending on the NoSQL database, some
use this to provide extra read replicas, and others do this in
case one motherboard dies. In this case, a secondary node
takes over as the master for the replicated set of data. When
the first node is fixed, it can take a fresh copy and become the
master for this data set again. This feature isn’t required when
nodes use centralized NAS storage rather than local attached
disk storage.

 Some NoSQL databases like MongoDB require dedicated read
replica nodes that are only queried if a primary node fails due
to hardware failure. This means you’re paying for redundancy
only. Other NoSQL databases, like MarkLogic, store secondary
replicas that coexist on the same physical host as a primary
host for a different part of the same database. This reduces
the overall number of servers required while still providing
local disk failover.

Replication strategies between NoSQL databases vary. Some
don’t guarantee the order of the updates (meaning two
updates to the same document could arrive at the replica in a
different order) or are transaction-aware (all updates that are
part of that transaction are applied as a single transaction on
the replica).

Replication can also be synchronous or asynchronous. With
synchronous the primary site doesn’t complete a transaction
until the secondary site is updated. This can lead to slower
update response times. Many NoSQL database are instead
asynchronous. Asynchronous will finish a local transaction
and then replay the journal frames at some point afterwards
on the remote replica cluster.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Seeing What Enterprise NoSQL Can Do 35

It’s possible to be asynchronous and transaction-aware —
the NoSQL database, like MarkLogic, guarantees the updates
are applied in order. This ensures the remote replica is
still consistent with the primary (albeit slightly delayed).
Asynchronous replication also allows the database and rep-
lica to still operate when network latency is high.

Replication supports business continuity and disaster recov-
ery by enabling you to keep a replica of the data outside
your primary data center. By outside, I mean at least hur-
ricane width away. Usually, 40 to 100 miles is considered to
be sufficient distance from areas where natural disasters are
possible.

Enterprise Data Backups
An enterprise needs consistent, database-level backups, includ-
ing data, schema definitions, configuration details, and journals,
and so on. Though you can back up only some of the data or
back up portions of it at different times, you still need to be able
to back up the entire database in one fell swoop.

NoSQL databases can offer backup capabilities via database-
supplied tools or file-system-level backups (such as LVM in
the Linux world). NoSQL systems that can synchronize con-
figurable database journal archiving can provide point-in-time
recovery of specific data from complete backups or from
snapshots. Being able to specify the lag time between journal

Example enterprise-class replication
MarkLogic offers an example of
enterprise NoSQL and shows what
you need to consider when setting
up support for enterprise-class rep-
lication. In this DBMS, replication
is implemented by copying journal
frames and replaying them to a rep-
lica database. Replica databases
can be queried but not updated by

the application. If any content is
stored in the master before replica-
tion is enabled, that content is bulk-
replicated in the replica database.
Bulk replication also occurs when
the master and the replica have
been detached for so long that jour-
nal replay isn’t possible.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 36
data being written to the active log file and data being sent
to the backup journal allows you to manage your recovery
objectives.

Multiple-Record ACID
Transactions

Some NoSQL databases offer atomic transactions within a
particular document or record, meaning that an update on a
single record will happen or it won’t. Keep in mind, however,
that the same guarantee doesn’t apply when multiple docu-
ments are involved in the update.

Consider the case of a payroll update. You’re updating the
raise percentage for employees based on their performance
reviews, as illustrated by the following SQL pseudocode:

Update raise_percent=0.20 in employee where
performance_review = 'Superior'

In this case, you want to ensure that every employee who has
a superior performance review gets a 20 percent raise. Ideally,
you want the update to happen fast, which is a problem if
the system is looping through every document and updating
the raise_percent attribute. If the check-writing program
is processing the same collection at the same time, Jane Q.
Developer may not get the raise she deserves, and that’s defi-
nitely not what you want.

Here’s another example. Suppose that you have two collections
in your college database: one for students and one for courses.
You made this design decision because your applications need
to access course data separately from student data. Now sup-
pose that you want to add a new course section and reassign
selected students to this new section. You want to make this
change atomically, creating the new section and moving stu-
dents into it, or failing to add the new section and leaving the
students where they are. You don’t want to have only some
students reassigned, and you don’t want to have any student
dropped entirely (meaning that he or she no longer has an
entry corresponding to that course).

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Seeing What Enterprise NoSQL Can Do 37
A NoSQL database that supports multiple-document ACID
transactions (see Chapter 3) won’t have any trouble with
either of these cases. A NoSQL database that implements
atomic updates only for single documents, however, requires
extra application support.

Enterprise-Class Security
Security is often one of the last considerations when it should
be one of the first. Within the database world, identity and
access management (IdAM) systems provide a critical service
in support of security. Government-grade security ensures
authentication and authorization down to document level.

Authorization and accounting
Authorization and accounting (or auditing, or accountability)
have to be combined to determine which person or machine is
allowed to do what to which data. In a typical relational data-
base management system (RDBMS), permissions can be applied
at database, table, record, and field level; allowed actions can
be create, read, update, or delete. More often than not, though,
permissions management is delegated to the application.

Managing these permissions is a way of enforcing the organi-
zation’s security policy. MarkLogic’s IdAM system acts as an
enforcement mechanism for that written policy.

 Make sure that you know when someone is talking about a
security policy, as opposed to a set of rules that can be applied
to the database to enforce a particular behavior or to notify
operations of a condition that needs attention.

Authentication
Although some systems allow database access based on
machine login systems, others require the DBMS to reauthen-
ticate users before granting them access. Likewise, access
rights to the database are determined by mechanisms inside
the database, not by permissions granted by the machine’s
operating system. This is as it should be: You don’t want an
unauthorized person who has gained access to a particular
machine to have access to the database as well.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 38
 MarkLogic’s system implements the Kerberos authentication

protocol, which provides mutual authentication between
a user and a particular server, as well as server-to-server
authentication and certificate-based security. This kind of
authentication can be required in addition to machine-level
login authentication, which provides another level of security.

Access control
When your system has validated a particular user’s digital
identity (keeping in mind that a user can have multiple digital
identities), the next question is to ask what privileges are
associated with that identity.

In the Linux world (Linux is a common mechanism for manag-
ing permissions on files/documents), permissions are associ-
ated with particular file-system objects. Permissions for files
are divided into three classes: owner, group, and world.
Each class can have permission to read, write, or execute a
file-system object. (Execute means something different when
it’s applied to a file-system directory.) Permissions are deter-
mined by aggregating the permissions for owner, group, and
world, and making changes in permission sets is complicated
by having to list all permissions for everyone.

Luckily, role-based access control (RBAC) can come to the
rescue. With RBAC, you can set database permissions based
on user roles rather than specify permissions on a per-user
basis — a task that’s harder to manage. One major benefit
of RBAC is that a change in permissions for a role affects all
users assigned to that role, which ensures that all users in
that role have the same permissions (and also illustrates the
“One fact in one place” principle).

 Supporting RBAC in the NoSQL database reduces the amount
of code in the application. This is a benefit of MarkLogic as an
Enterprise NoSQL database.

Compartment security
Compartment security is a technique whereby a document is
assigned to one or more compartments, and the compart-
ment is represented by a label. Roles are extended to include

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Seeing What Enterprise NoSQL Can Do 39
a compartment designation as well. To access a document, a
role must have the appropriate access to the document and
must be in all the appropriate compartments as well. This
system varies from traditional RBAC systems, in that it applies
AND logic to the roles assigned to compartments, whereas
normally, OR logic is applied.

Consider a Classification security compartment, contain-
ing the roles unclassified, confidential, secret, and
top-secret. You may also have another compartment called
Department, containing roles called Finance, HR, and
Engineering. You have a design document for a new product
that will make your company millions, and you assign this doc-
ument to both the top-secret role and the Engineering
role. HR roles that have top-secret access don’t have access
to this design, and secret members of Engineering don’t
see it either. Only those who have both top-secret and
Engineering roles can access the document.

Compartment security can be applied to many corporate
and not-for-profit information management structures. In the
United Kingdom, for example, doctors only have access to
certain types of documents like scan and test results but not
profile information docs. So when they’re trying to diagnose a
patient they need to see only tests and scan results for a par-
ticular condition; they don’t need to see information about
income or any psychological evaluations.

 To ensure security of information in a complex environment,
you should consider Compartment Security in your applica-
tion and an enterprise NoSQL database.

Policy Management
Policy management supports automated actions based on
specified policies. A policy may indicate that only users in a
particular role can update a particular database, for example,
and a security warning should be generated if anyone else
attempts this type of access.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 40

Administration and
Management Tools

An enterprise-class NoSQL DBMS should have a suite of data-
base administration tools, as well as other management and
monitoring tools. These tools allow businesses to do the fol-
lowing things (among others):

 ✓ Determine a database’s health at any time

 ✓ Determine proactively whether changes are required to
improve performance

 ✓ Initiate any needed configuration change based on data-
base load and resource consumption

Scripting use cases
Providing scripting capabilities for
administrative functions eases the
burden on database administrators
because they can create a single
script that can run across multiple
machines. The MarkLogic features
in this sidebar may exist in other
NoSQLs, but they currently all exist
in MarkLogic.

MarkLogic admin APIs provide these
features:

 ✓ Configuring multiple identical
instances of MarkLogic across
a cluster or multiple clusters to
maintain consistency among
environments

 ✓ Automating server maintenance,
such as backups based on crite-
ria other than a schedule

 ✓ Managing server resources

 ✓ Making bulk updates in server
configuration, such as changing
roles across a large subgroup of
users

 ✓ Generating log and/or email
notifications for specific server
events

Tying scripting capabilities to specific
server events provides enhanced
capabilities for automatic reprovi-
sioning. A database administrator
can use MarkLogic scripting sup-
port to grow or shrink a cluster on
demand or based on changes in CPU
use over time.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Seeing What Enterprise NoSQL Can Do 41
Sometimes, you have to make the tools yourself (or your IT
department does) to fit the needs of your business. Management
and monitoring tools that are based on an application program-
ming interface (API) offer a distinct advantage to large organiza-
tions that already have a large installed base of management
and monitoring systems. Using an offered API, an organization
can quickly integrate information about the operational state
of the NoSQL DBMS into its existing workflow and management
consoles.

An enterprise-class product helps an organization create its
own policies — or modify existing policies — to respond to
changing security and operating needs.

 If the API results in prebuilt interfaces that connect to and use
system management tools that are popular in your industry,
so much the better.

High Availability
High availability is a must for business-critical applications,
which must continue to function even when part of a system
is lost. You must ensure that users can access data whether
or not the database is on and whether or not the database has
disaster-recovery support.

You can describe availability as a function of ACID compliance
(see Chapter 3), high availability, and disaster-recovery repli-
cation. Journal log shipping between disaster-recovery sites
and journaling on a single node ensures durability of transac-
tions. Shared-disk systems mitigate the need for replication
because shared disks are handled by the storage subsystem
transparently to the database, which means that shared disks
provide high availability capability.

ACID compliance, replication for disaster recovery, and high
availability combine to meet the availability requirements
needed to run a database that needs to run 24/7. And that’s
what enterprise NoSQL is all about.

 MarkLogic, for example, provides multiple features that enable
high availability, including fast automatic restart, automatic
concurrent recovery, online backup operations, hot configura-
tion changes, and shared-nothing architecture.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprise NoSQL For Dummies, MarkLogic Special Edition 42

Scalability
You must be able to scale a database by adding or subtracting
resources depending on business needs. You obtain scalability
by adding more machines and replicating or sharding data
(see Chapter 3). You get availability by choosing several
machines to participate in a replica set. In a replica set, at
least one machine should be available to respond to read
requests for every part of the database (therefore avoiding
partitions on read).

Integration with Third-
Party Solutions

Integration with third-party services supports the integra-
tion of your NoSQL DBMS with existing management and
monitoring solution. Other systems include Hadoop for
batch processing and executing document enrichment func-
tions asynchronously. You may also wish to integrate your
existing relational business intelligence tools to your new
NoSQL solution. Some support ODBC and native connectors
to tools like Tableau for this purpose.

MarkLogic integrates with Nagios and HP Openview monitoring
solutions and integrates with 3rd-party tools that have a REST
interface.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Real-World Enterprise
NoSQL

In This Chapter
▶ Consolidating data

▶ Increasing situational awareness

▶ Securely storing operational data

▶ Repurposing data for multiple uses and applications

T
his chapter helps you understand what NoSQL offers you.
I present use cases in which a NoSQL solution can provide

four capabilities for your business: data consolidation, situ-
ational awareness, storage of operational data, and discovery
and reuse of existing data.

Consolidating Disparate Data
Data consolidation means bringing together different data
sources to get new value or meaning from them. These dif-
ferent types of data — such as photos, document contents,
sensor data, and posts to social media sites — can’t be stored
in a relational database management system (RDBMS). The
ability to search multiple data sources in one database, how-
ever, significantly improves search results and analytics.

County government
Fairfax County is one of the largest counties in the U.S. with
more than 1 million residents and a budget larger than that
of four states. It’s also the largest jurisdiction in Virginia and

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

44 Enterprise NoSQL For Dummies, MarkLogic Special Edition

the Washington, D.C., metropolitan area, with a population
exceeding that of seven states. The median household income
of Fairfax County is one of the highest in the nation, and more
than half its adult residents have four-year college degrees
or secondary education. Fairfax is a diverse, thriving county,
home to the headquarters of U.S. government agencies such
as the Central Intelligence Agency, the National Geospatial-
Intelligence Agency, the National Reconnaissance Office,
the National Counterterrorism Center, and the Office of the
Director of National Intelligence.

Problem
Fairfax County was challenged to respond to the high volume
of requests from its constituents — government officials,
community members, and developers — for property his-
tory information. Volumes of data were stored in disparate
databases, file systems, and formats, so that data couldn’t be
searched effectively (see Figure 5-1).

Figure 5-1: Traditional RDBMSes need a lot of ingest time, data manipulation,
and schema development.

Figure 5-1 shows what companies often have today: several
different silos of (typically) relational data. But relational data
usually amounts to only 20 percent of an organization’s total
data. In addition, an RDBMS can’t store Microsoft PowerPoint
files, the contents of PDF forms, documents, or images. This
form of data management is both ineffective and costly. Like
many companies, Fairfax County needed to consolidate data
in one place.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Real-World Enterprise NoSQL 45

Solution
Fairfax County needed a solution that would integrate dispa-
rate data, maintain its integrity, and make it easy to access. It
also needed a solution that was a good fit its their existing IT
infrastructure, as well as a low and predictable total cost of
ownership.

The county ultimately selected a MarkLogic solution, which is
schema-agnostic, accepting data from all the different silos in
its current form and providing immediate access to that data
(see Figure 5-2).

Figure 5-2: Consolidating disparate data in a single DBMS.

Fairfax County developed a repository of land-use data that
made it easier for county employees, land developers, and resi-
dents to access real-time information about zoning changes,
county land ordinances, and property history. This repository,
held in the new NoSQL database, boosted the productivity of
county employees, who no longer had to search multiple data-
bases for pertinent information. It also enabled county residents
to access information on their own computers and smartphones.

Benefits
 Within six months, Fairfax was able to do the following:

 ✓ Maintain and even increase service delivery to constitu-
ents, supporting open-government goals and enhancing
its reputation with citizens and businesses

 ✓ Reduce overall cost of ownership and IT resources

 ✓ Quickly develop new applications using the same data

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

46 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Investment banking
A Tier 1 investment bank used 20 different RDBMSes as opera-
tional data stores for over-the-counter derivatives processing.
Each database had its own method of ingesting the trades,
and development time was required to translate each new
type of derivative to the relational structure. In many cases,
trades were simply shoehorned into existing schemas. As a
result, a single column may store several types of information
based on other parameters of the transaction, which made
reporting complex and subject to errors.

The bank successfully consolidated all 20 operational data
stores into a single MarkLogic database management system
(DBMS) that saves all trades in their native forms without requir-
ing extensive development cycles. Because the new product
supports ACID transactions and replication, the bank maintains
the reliability and availability guarantees of its DBMSes.

 The new DBMS also benefits the bank in several other ways:

 ✓ Faster time to market: New instrument types are sup-
ported in a matter of hours, rather than days, weeks, or
months.

 ✓ Higher data quality: A unified operational trade data
store eliminates processing errors associated with mul-
tiple stores containing conflicting data.

 ✓ Lower cost per trade: Hard and soft costs associated
with maintaining multiple systems (and nine full-time
support positions) were eliminated, along with expensive
exception-management costs.

 ✓ Greater agility: The bank can meet changing business
needs such as escalating regulatory pressures without
adding expensive resources.

Sharpening Situational
Awareness

Situational awareness implies responding in real time to new
data in the system (alerting) or modern streaming data, such
as social media posts and sensor data. This data is passed
immediately to other systems (such as military commands or

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Real-World Enterprise NoSQL 47
trading systems) or to other devices (such as battlefield-soldier
devices, instant-messaging clients, or email).

The Federal Aviation Administration (FAA) brings together
a wide variety of fast-changing information from internal
systems and public information sources to build a real-time
crisis-management dashboard. The FAA uses the Emergency
Operations Network (EON) real-time application for monitor-
ing and tracking severe weather and emergencies to keep pas-
sengers, flights, and airports safe.

To properly manage emergencies on the ground and in the air,
the FAA required EON to handle multiple document types and
feeds, and to make sense of the information as quickly as possi-
ble. It needed a solution that provided a back-end repository and
searched for unstructured information: tweets, weather reports,
news stories, emails, Microsoft SharePoint documents, geo-
spatial data, and more. All these data sources had to be pulled
together and then integrated with custom and commercial appli-
cations so officials could analyze and share the data rapidly.

Within a few weeks of implementing a MarkLogic NoSQL DBMS,
the FAA had access to full text, metadata, faceted search, alerts,
and complex content, and was able to roll out a fully integrated,
web-based emergency communication system based on the
new DBMS. The EON dashboard now provides a single consoli-
dated view of situational-awareness data. The new database
enables the FAA to load, search, transform, and render multiple
types of unstructured data quickly and easily to provide a con-
solidated view of situational-awareness content (see Figure 5-3).

Figure 5-3: Sometimes, it just makes sense to store disparate data in one
place.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

48 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Storing Operational Data
An operational database is a highly scalable yet enterprise-
ready database for rapidly added, high-volume information
that scales horizontally on commodity hardware. Examples of
operational databases include trading platforms, social media,
and analytics platforms.

One large financial institution carries out hundreds of thousands
of trades every year, with many complex trades taking an aver-
age six months to close. In these complex deals, each action is
represented as a document in FpML (Financial Products Markup
Language) format — an open-source, XML-based trade descrip-
tion standard.

Unfortunately, this approach created several problems for the
organization:

 ✓ Many institutions with which this organization interacts
use different versions of the FpML standard.

 ✓ The FpML standard itself changes over time.

 ✓ Each trade document contained only a trade instruction —
not the full background information required for a person
to carry out the trade or determine its risk. This so-called
reference data on companies, exchange rates, and other
vital information was held within an RDBMS.

 ✓ Trades weren’t always visible and actionable as soon as
they were committed to the database, which created poten-
tial risk of losing documents after they were committed.

 ✓ The regulator requested a 5-minute view of the risk to
which the institution was exposed, not the 24-hour view
provided by its traditional data warehousing approach.

 ✓ The organization itself wanted to be able to spot risky
trade behavior in time to stop any risky transactions.

A MarkLogic enterprise NoSQL DBMS was a good fit for solv-
ing these business problems:

 ✓ It natively understands and can index entire XML docu-
ments.

 ✓ Changes to the FpML schema over time don’t pres-
ent a problem. The DBMS can use field, element,

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Real-World Enterprise NoSQL 49
element-attribute, and path range indexes to group
common elements in different schemas.

 ✓ The financial institution can use XQuery with database
triggers to perform entity extraction and enrichment,
which automates the process of fetching and embedding
relational reference data within the trade document.

 ✓ The DBMS is ACID-compliant and highly available, and
it ships logs to a disaster-recovery site, so the financial
institution’s trade documents are never lost after they’re
committed to the database. (For details on ACID, see
Chapter 3.)

 ✓ Using the same range indexes, the DBMS can provide
immediate, live reporting on all trade data, satisfying any
regulator.

 ✓ The DBMS provides built-in alerting, enabling the orga-
nization to respond quickly to any trade or activity that
may be invalid or risky.

Discovering and Repurposing
Data

Repurposing existing data for other uses can be a major source
of new revenue for an organization. Often, a single app connects
to a large number of data sources, which amounts to a lot of
custom work.

Then along comes another product, followed by another, and
the business ends up with a rat’s nest of connections between
applications and data sources (see Figure 5-4).

The problem gets worse every time a new data source or
application is added. By this point, I think you can guess what
a headache the solution is to manage.

A MarkLogic solution allows businesses to solve this problem
without the headache. Compare Figure 5-5 with Figure 5-4. The
solution in Figure 5-5 loads data from many sources without
requiring conversion and provides that data to many device
types and form factors in real time, on the scale that large
organizations require.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

50 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Figure 5-4: Complex connections can be expensive to untangle.

Figure 5-5: Streamlining connections also simplifies data delivery.

In this section, you take a look at a couple of examples of com-
panies that put MarkLogic solutions in place and came out
feeling less scrambled.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Real-World Enterprise NoSQL 51

Publishing
Springer is a leading publisher of scientific, technical, and
medical books and journals. Its customers were begging for a
web-based solution that was part of their workflow and also
provided a single piece of content. The company had built
a database of 3 million images, along with associated XML
descriptions, but integration of this content into existing
workflow was difficult.

 Springer migrated its existing system to MarkLogic and real-
ized the following benefits:

 ✓ Increased user time spent on the website

 ✓ A 50 percent decrease in bounces

 ✓ Storage space in the new database for more than 5 million
images

Broadcasting
The British Broadcasting Corporation (BBC) regularly repur-
poses content. Editors put content into a database, and that
content gets published dynamically. (Dynamic publishing is
content repurposing on steroids.)

During the 2012 Summer Olympics in London, the BBC used
a MarkLogic NoSQL DBMS to publish content dynamically,
based on user settings and preferences. The solution also
incorporated photographs, results, and details about the ath-
letes alongside editors’ content to provide dynamically repur-
posed content. You can see how this solution works on the
BBC Sport website today at www.bbc.com/sport.

 Discover more information at www.marklogic.com/
resources/playing-to-audiences-in-the-
digital-world.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.bbc.com/sport
http://www.marklogic.com/resources/playing-to-audiences-in-the-digital-world
http://www.marklogic.com/resources/playing-to-audiences-in-the-digital-world
http://www.marklogic.com/resources/playing-to-audiences-in-the-digital-world

52 Enterprise NoSQL For Dummies, MarkLogic Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

Ten Questions to Ask About
NoSQL Solutions

In This Chapter
▶ Considering your internal and external needs

▶ Calculating hardware and software requirements

▶ Looking forward to growth and innovation

W
hen you’re considering NoSQL solutions for your
application or system architecture, the choice is rarely

simple or certain. NoSQL databases provide certain benefits,
but they don’t offer everything — and they don’t try to.

This chapter examines ten factors you need to weigh when
you’re considering NoSQL products. Working your way
through this chapter takes you a long way toward finding the
right solution.

Are You Ready to Incorporate
the Solution?

Incorporating a NoSQL database management system (DBMS)
into your business is disruptive. The technology itself isn’t
disruptive; the changes that you’re bringing in with it are.
With NoSQL, you’re seeking to do new things with data, and
anything new involves a learning curve. The only question is
how steep that curve will be. You (or your IT staff) have to be
able to do the following things:

 ✓ Modify your application design procedures and your
system application architecture to accommodate the capa-
bilities and operational characteristics of the new software.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

54 Enterprise NoSQL For Dummies, MarkLogic Special Edition

 ✓ Understand the NoSQL DBMS, as well as the languages
needed to query the database. In some cases, you may
have to use Java to write to the NoSQL application pro-
gramming interfaces (APIs); in other cases, you may have
to know a completely different query language. (Most
NoSQL DBMSes, however, provide a cheat sheet from
SQL to the native query language.)

If you don’t have these skills, you need to have a plan to develop
them internally or acquire them. In either case, allocate training
time and budget into your plan.

Is the Solution Agile Enough?
To put this question a little differently, can the solution
support documents and values and triples and search, and
is it schema-less, and does it provide multiple views of all
this data, with the same features implemented consistently?
Buying a NoSQL database that can manage many different
data types can be better than buying four — one to manage
each data type — and then integrating them to a single appli-
cation. The answer can help you determine exactly how dis-
ruptive bringing a NoSQL solution into your organization will
be (see “Are You Ready to Implement the Solution?” earlier
in this chapter) and whether the solution can expand with
you as you discover new ways to mine your data.

 Incorporating a NoSQL solution into your business requires
willingness to change, adapt to change, learn new skills, and
think about solutions to business problems in a new way. You
must decide whether a NoSQL solution is worth the effort in
terms of the cost of disruption and whether you’ll ultimately
achieve a significant return on this investment.

 Ask your vendor how quickly its customers have been able to
implement their first projects, as well as how much develop-
ment and training time was required, and whether consultants
were used. Also find out how quickly customers were able to
implement their next projects and whether they needed the
same level of support.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Ten Questions to Ask About NoSQL Solutions 55

Does the Solution Meet Your
Application Requirements?

You may be looking at a NoSQL DBMS to solve an existing
business problem, or you may be anticipating a change in the
number of users or the type and amount of data that you need
to support. Perhaps you’re running a pilot project to gauge
the time and effort required to develop a prototype, to test
performance in your anticipated operational environment, or
to build an environment to evaluate different NoSQL solutions.

 Whatever your reason for considering NoSQL, it pays to know
what problem you’re trying to solve and what you expect
in terms of costs (both development and operational) and
performance.

How Much Development Is
Required to Get Data In?

Some NoSQL databases require you to ensure that data is in a
particular format and some only require the files to be a spe-
cific type. Depending on how the database works, the speed
with which the data is available to be searched and can connect
to an application will vary.

Ask yourself some questions here:

 ✓ Will the database immediately fit your application needs,
or will it need to be customized?

 ✓ How much, if any, effort will it take to develop the
Extract-Transform-Load (ETL) software?

 ✓ Does the vendor supply that software or training?

 ✓ Do you have the expertise in-house, or will you have to
hire consultants?

 Ask the vendor to show you how that data can be brought
into the database with ease and how quickly the data can be
accessed after it’s in the database.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

56 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Do You Need New Tools?
Integrating NoSQL into your development and operations
organizations may make certain tools obsolete, so you may
have to acquire different tools. You probably can extend your
development environment to support the language in which
you need to write your application code, however. Eclipse, for
example, has modules for multiple languages, as do Komodo
Edit and Visual Studio, and all can be extended via external
libraries.

 Working through how you’ll integrate a new DBMS into your
existing management and monitoring systems helps you
identify the obstacles you may face. In this situation, vendor-
offered interfaces to popular management and monitoring
systems can be life-savers.

Does the Solution Support
Your Cloud Strategy?

Your organization does have a cloud strategy, right? Chances
are that it does, even if that policy isn’t written down or even
articulated. Figuring out whether a potential NoSQL solution
supports your cloud strategy requires you to know what kind
of cloud platform you’re considering: IaaS (Infrastructure as
a Service), PaaS (Platform as a Service), or SaaS (Software as
a Service). You also need to know how you plan to use the
cloud with your NoSQL DBMS, such as replicating and backing
up data.

 If you’re using a public cloud solution, you also have to
address security concerns regarding data in transit and data
at rest — concerns that you may not have had to consider
while operating inside the bounds of your data center or
using a private cloud solution. Both you and your vendor
need to address encryption, performance, and access-control
concerns.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Ten Questions to Ask About NoSQL Solutions 57

Is the Solution Enterprise-Ready?
Enterprise NoSQL characteristics (see Chapter 4) include
backups, flexible replication, multiple-document ACID transac-
tions, and security.

When you’re considering an enterprise NoSQL solution, also
consider the following:

 ✓ What kind of track record the vendor has (including how
long it’s been doing business)

 ✓ Whether the vendor’s existing clients are similar to you

 ✓ How well the DBMS fits with your product-development
cycles and ongoing maintenance needs

 ✓ Whether the vendor offers help-desk support and prob-
lem resolution directly or through a third party and are
they based in your country

 ✓ Whether the DBMS can be customized and, if so, who can
do the work

 ✓ Whether the vendor provides DBA tools to manage the
health and deployment of a database cluster

Do You Need Specialized
Hardware?

One advantage of most NoSQL solutions is that the DBMS
runs on commodity hardware and doesn’t require specialized
hardware. Commodity hardware isn’t necessarily cheap, but
the good news is that you can expand as your needs grow, you
don’t have to pay for more resources than you’re consuming,
and you can repurpose hardware if your consumption drops.

 If a solution provider wants you to buy specialized hardware
to support the database, be very careful. This just isn’t the
“NoSQL way” for increasing capacity, and you should be pre-
pared to question the vendor closely about why its solution
needs specialized hardware.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

58 Enterprise NoSQL For Dummies, MarkLogic Special Edition

Will the Solution Grow with
Your Business?

If you have a Big Data problem — that is, if unstructured data
that’s increasing in volume, variety, velocity, and complexity
is critical to your business — understanding how a NoSQL
solution will handle increasing loads is extremely important.
Find out the following things:

 ✓ Whether the vendor has enterprise customers who are
using the solution in scale and in production for critical
data

 ✓ Whether the vendor’s customers are increasing its use of
the DBMS in its environments

 ✓ Whether any customers are using their product on a
public site that you can access and try for yourself

Can the Solution Speed
Application Development?

Some NoSQL databases don’t include security, consistency,
and search, which can incur a lot of overhead in development
cycles. Consider using a NoSQL database that provides the
enterprise features you need to assist in application devel-
opment, such as built-in advanced query capabilities, word
stemming, full text search, geospatial radius, and alerting.

A database that provides rich application libraries and func-
tionality can dramatically reduce implementation times, from
as long as 18 months to as little as 6 to 12 months. Purchasing a
commercial NoSQL database rather than an open-source alter-
native can pay huge dividends in the end. Try out MarkLogic’s
commercial enterprise NoSQL database to reduce your imple-
mentation time.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Brought to you by

 Open the book and find:

•	An explanation of
NoSQL jargon

•	Why Enterprise NoSQL
is necessary

•	What to look out for
and why

•	What’s possible with
NoSQL

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

ISBN: 978-1-118-82900-4
Not for resale

Most people think they have access to all the
data that they can. But that’s usually only true
for data that conforms to the structure and
data model required for a relational database.
The new generation of NoSQL databases
are turning that perception on its head and
speeding up development time dramatically.

•	Make	the	most	of	all	of	your	data	—	
schema-agnostic	NoSQL	databases	don’t	
put	limits	on	the	data

•	Deliver	applications	with	speed	and	
agility	—	don’t	be	slowed	down	by	time	
intensive	ETL	or	data	modeling

•	Solve	new	problems	—	without	the	limits	of	a	
relational	schema,	you	can	deliver	apps	you	
never	thought	possible

•	Make	smart	choices	—	decide	which	
NoSQL	database	is	the	right	one	for	
your	project

What’s the question
you’ve always wanted to ask
of your data?

Enterprise	N
oSQ

L
B

rooks Charlie Brooks

•	Do more with your structured
and unstructured data

•	Combine disparate data
sources without the limits
of relational systems

•	Build applications faster within
an agile data architecture

Learn	to:

Enterprise	
NoSQL

MarkLogic	Special	Edit
ionMaking	Everything	Eas

ier!™

	Table of Contents
	Introduction
	 About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1: NoSQL 101
	Talking the NoSQL Talk
	What NoSQL Is
	What NoSQL Isn’t
	Is NoSQL Right for Your Business?

	Chapter 2: What’s the Difference in DBMSes?
	Comparing RDBMS and NoSQL
	Working on Your Relationships
	Getting Back to Denormal

	Chapter 3: Going Beyond the Data Center with NoSQL
	Data Distribution
	The ACID Test: Data Consistency
	Document Durability

	Chapter 4: Seeing What Enterprise NoSQL Can Do
	Enterprise Replication
	Enterprise Data Backups
	Multiple-Record ACID Transactions
	Enterprise-Class Security
	Policy Management
	Administration and Management Tools
	High Availability
	Scalability
	Integration with Third-Party Solutions

	Chapter 5: Real-World Enterprise NoSQL
	Consolidating Disparate Data
	Sharpening Situational Awareness
	Storing Operational Data
	Discovering and Repurposing Data

	Chapter 6: Ten Questions to Ask About NoSQL Solutions
	Are You Ready to Incorporate the Solution?
	Is the Solution Agile Enough?
	Does the Solution Meet Your Application Requirements?
	How Much Development Is Required to Get Data In?
	Do You Need New Tools?
	Does the Solution Support Your Cloud Strategy?
	Is the Solution Enterprise-Ready?
	Do You Need Specialized Hardware?
	Will the Solution Grow with Your Business?
	Can the Solution Speed Application Development?

