

IoT et Réseaux de Capteurs Autonomes : encore quelques challenges ...

Eric Mercier

RF Architecture & IC Design Lab

eric.mercier@cea.fr

Introduction to Autonomous RF

- Wide variety of RF communications
 - Cellular communications
 - Smartphone makes everything
 - 4G / LTE is very power hungry
 - Throughput of Data is growing very fast

.... always connected

- WIAN
 - Indoor use / Main powered

.... always connected

- WPAN
 - Cable replacement Multimedia (5.8 GHz / 60 GHz)
 - Wireless Sensor & Actuator Networks

.... battery powered

Challenges to drastically reduce power consumption

Motivation – Internet of Thing

- Most-demanding field for power reduction
 - Some applications will not exist because :
 - Years life-time battery replacement

Uncollected Batteries

Manpower Limitation

Waste Management

- Energy Autonomy
 - Batteryless Energy Scavenging

 $1 \mu W$

RF communication alone

10 mW

... still more energy required for sensors & processing

Research Paths for IoT

Technology

- Technology shrink
- Benefit from F_T 7

.... but leakages and

Cooperative & standards

Interoperability

.... but overhead

lead app.

Research breakthrough required for power reduction !!!

- Technology pulled
- Easy Digital-Analog mix

.... but tuneability

- Always at the best fit
- Efficiency & Performance

.... but dynamically

RF Architecture

Protocol

Technology Trends

Technology push

From 130nm to 65nm

... & beyond to FD-SOI 28nm

- Very-high volumes envisioned → very small nodes
- Benefit from natural down-scaling
 - Better Active Modes consumption / Higher F_T
 - Make use of more digital process
- More active blocks integration less passives

Versatility & reconfigurability

- Adopt a digital-oriented architecture
 - Limit the analog front-end to 50 % of the surface
- Co-simulation of analog & digital for an Overall Performance split

High-Quality Factor external passives

- Front-End channel filtering
- New concepts for new performance? → the Holy Graal!

Technology Trends - leakages

High impact of Sleep Currents for Low Duty Cycle_{TIME}

$$I_{Mean}/I_{Active} \approx DC_{Time} + \frac{1}{RatioCurrent}$$

■
$$DC_{Time} = 1\%$$
 and $R_{Current} = 100$ → 2%

■
$$DC_{Time} = 0.1\%$$
 and $R_{Current} = 1000$ → 0.2%

■
$$DC_{Time} = 0.01\%$$
 and $R_{Current} = 10000$ → 0.02%

Reduce Idle mode Currents & minimize leakages

Technology Trends - leakages

- Reduce VDD
 - Reduce leakages & dynamic power

$$P = \alpha f C V_{DD}^2 + I_{SC} V_{DD} + I_{leakage} V_{DD}$$

- but transitor stacking issues
- Ultra Cut-Off with V_{gate} above V_{DD}
 - but longer settling times & only sub-threshold leakages

Minimize Short Circuit

Mandatory when involving more digital activity

Technology - Digital-Oriented RF

Mandatory use of pure-Digital techniques to address 65 nm / 40 nm / 32 nm / 28 nm...

... looks like its digital ...

- **Leakages reduction & Short Circuit effects**
- Dynamic VDD adaptation: low-voltage design
- FD-SOI new benefits : parasitics ↘, frequency ↗

... and RF Front-End / IF Channel filter tuned

... this is the Holy Graal ...

to alleviate further analog blocks in the chain

RF Architecture Optimization

- Make use of Tuneable filter
 - Drastically alleviates the IC Front-End by removing jammers
 - Bandwidth can be tuned dynamically

Consider the whole RF chain

Optimizing the whole chain

...rather than optimizing blocks

- Get rid of usual Figure-of-Merit
 - For a given spec, not always at its best not the only one of interest
- Make a link between System Parameters

From business as usual ... to green-driven performance & IC design

RF Architecture Optimization

- Classical approaches might be limited
 - Design parameters: biasing, voltage, gain etc ...
 - Environmental parameters: temperature, Crystal ageing, drifts ...
 - Technological parameters: V_{th}, transistor mismatches ...

New methods - statistical approach

- Meta-modelling of the blocks
- Parametric optima for the whole chain
- Stochastic-gradient method

to solve a concave behavior

Current own internal development & LJK-UJF partnership

... a lot of room to further improve power consumption factor of **10** as a research target

Low Power RF Design

- Low-Power / Small Footprint design
 - Benefit from natural down-scaling
 - Low-Power consumption

... but small silicon surface - inductorless

- New paradigms
 - Integrated narrow-band active filters
 - Digital-oriented architecture / reduced pure-analog functions

 V_{BIAS}

- Low-Power ADC for Software Defined Radio
- Below-1V design
- Multi-standards compliant blocks

Main CG g...-Boost CG

amplifier amplifier

- New features
 - Block specifications adapted to the overall Front-End context
 - Tuneable parameters the average power consumption

Low Power RF Design

- Direct Quantization
 - Very dense digital-oriented architecture
 - Easy porting from one CMOS techno to another
 - No Sampling No Clock
 - Low-Power consumption

... a real low-power consumption SDR

Current own internal development

& University of Columbia partnership

- Sub-Sampling Architecture
 - Potentially High-End thanks to narrow-band external filters
 - Integrated FIR / IIR process
 - Actual Low-Power 8-bit / 40 MHz ADC implementation

Reconfigurable Transceiver

Define reconfiguration thresholds and strategy Intra- or Inter-frame reconfiguration

Reconfigurable Transceiver

Conceptual reconfigurable transceiver

Reconfigurable Receiver

- REACT
 - **Identify** blocks with good power consumption /performance trade-offs
 - Example of Zero-IF RX with digital channel selection

Noise/Power

Linearity - Power

Dynamic Range – Bandwidth - Power

Phase Noise - Power

Performance - Power

Reconfigurable Receiver

- **SENSE**
 - Define signals that will extract information concerning link quality
 - For example: RSSI, LQI, SNR, PRR, RNP

→ Noise Floor

Reconfigurable Receiver Analyze Historical Link Quality Estimators (LQE) **ANALYZE** H. Baccour et al. "Radio link quality estimation in WSN: a survey" - ACM TSN 2012 Hardware-based Software-based **RSSI** PRR-based **RPN-based** Score-based LQI RNP F-LQE PRR SINR ➤ WMEWMA **WRE** ETX **EVM KLE** Four-bit MetricMap $SI_{adj}R$ CSI

Use new or a combinaison of these metrics? Implementation cost?

Reconfigurable Receiver

- DECIDE
 - Define reconfiguration thresholds and algorithm
 - Two principal types of reconfiguration
- Static reconfiguration
 - Inter-frame reconfiguration

- Dynamic reconfiguration
 - Intra-frame reconfiguration

- Periodic update of receiver performance based on observation windows
- Employs software or hybrid LQE
- Increased PER

- Requires a fast LQEHW and low computation delay
- Always starts in high-perf. mode
- Requires LQE thresholds
- No inherent loss of sensitivity
- Feasibility?

EnvAdapt - New SINR Calculation Block

In addition to co-channel interference

$$SINR = \frac{P_{received}}{N_i + \sum_{k \neq i,j} \alpha_{jk} P_k + \sum_{k \neq i,j} \sum_{l \neq i} \gamma_{kl,i} P_k P_l^2 + \sum_{k \neq i,j} P_{PN} + QN}$$

EnvAdapt - Example

- Zero-IF Architecture
 - Digital channel section with reconfigurable LNA, Mixer, VCO, ADC

Power/performance models of the analog blocks are defined based on Figures of Merit for a target technology node.

Mode	Pdc	NF	IIP3	PN	ENOB
	[mW]	[dB]	[dBm]	[dBc/Hz]	[bit]
High	22.6	4.6	-26	-114	9
Moderate	10.5	7	-27	-110	6
Low	4.5	14.7	-29	-95	3

Three Power/performance modes are defined.

[&]quot;Power Reconfigurable Receiver Model for Energy-Aware Applications", A. Didioui, C. Bernier, D. Morche, O. Sentieys, MWCAS2013

EnvAdapt - Example

- Zero-IF Architecture
 - Digital channel section with reconfigurable LNA, Mixer, VCO, ADC

Low complexity – LQEHW - calculation in the D-BB

$$\mathsf{SINR} = \frac{P_{received}}{N_i + \sum_{k \neq i,j} \alpha_{jk} P_k + \sum_{k \neq i,j} \sum_{l \neq i} \gamma_{kl,i} P_k P_l^2 + \sum_{k \neq i,j} P_{PN} + QN}$$

$$\mathsf{LQE}_{\mathsf{HW}} = \frac{P_{received} + \sum P_{Co-channe} \mathbf{l} + \sum_{k \neq i,j} \sum_{l \neq i} \gamma_{kl,i} P_k P_l^2 + \sum_{k \neq i,j} P_{PN}}{N_i + \sum_{k \neq i,j} \alpha_{jk} P_k + QN}$$

"Power Reconfigurable Receiver Model for Energy-Aware Applications", A. Didioui, C. Bernier, D. Morche, O. Sentieys, MWCAS2013

HarvWSNet

- Simulation environment considering both
 - Discrete time events (ex : packet transmission)

→ WSNet

Continuous time events (ex : energy harvesting

→ Matlab

[&]quot;HarvWSNet: A Co-Simulation Framework for Energy Harvesting Wireless Sensor Networks", Amine Didioui, Carolynn Bernier, Dominique Morche, and Olivier Sentieys, IEEE ICNC, 2013

[&]quot;Prototyping an Energy Harvesting Wireless Sensor Network Application Using HarvWSNet" Florian Broekaert, Amine Didioui, Carolynn Bernier, Olivier Sentieys, 3rd Workshop on Ultra-Low Power Sensor Networks (WUPS) 2013.

Scénario Métro Parisien Ligne 13

RF Going GREEN, actually ...

AGC (ideal)

RF Architecture

EnvAdapt

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES DE L'INFORMATION**

www.leti.fr

Thank you for your attention

