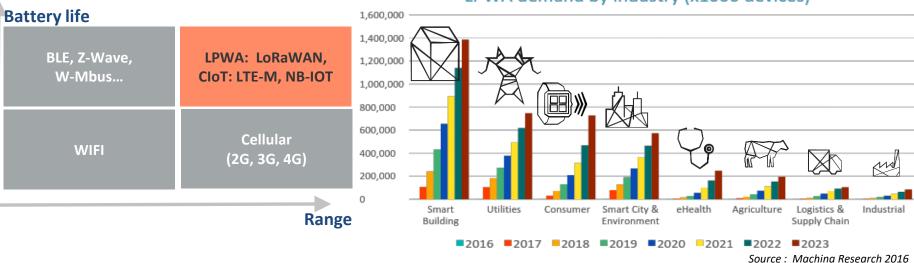


Market segmentation for LPWAN technologies

Oct 2019

Copyright ©Actility - Confidential

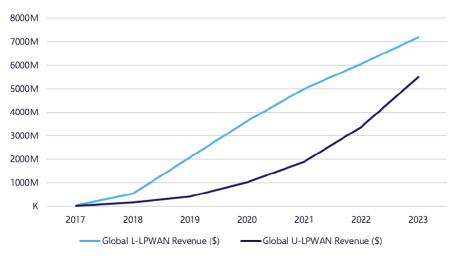
Why all the buzz ?


IoT market overview and segmentation

Copyright ©Actility - Confidential

Convergence of IoT ISM band technologies to LPWAN

4 billion LPWA connected devices worldwide by 2023

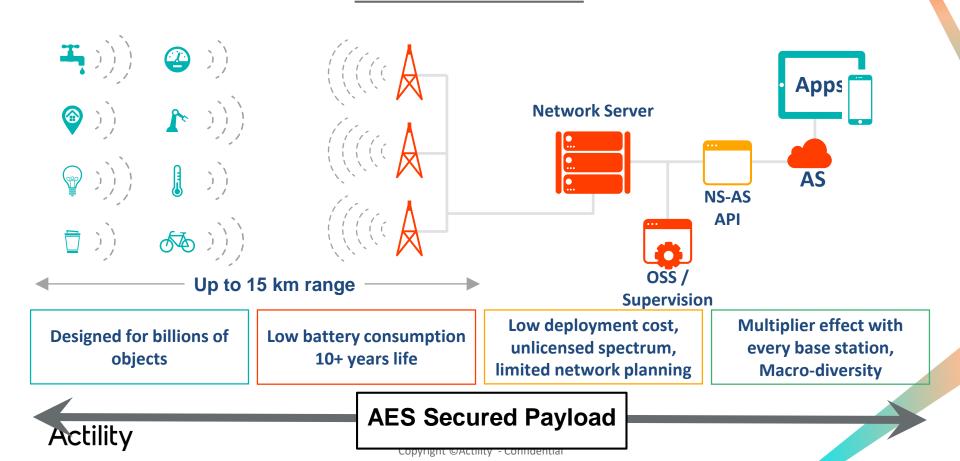

LPWA demand by industry (x1000 devices)

- With Cost, Battery and Range constraints solved, LPWAN technology is driving massive IoT growth
- Current short range ISM band technologies will converge towards LPWAN technology.
- LoRaWAN best positioned to capture the short range ISM band market segment.

Opportunity for MNOs to capture and monetise short range technologies with LoRaWAN CUILTY
Copyright ©Actility - Confidential

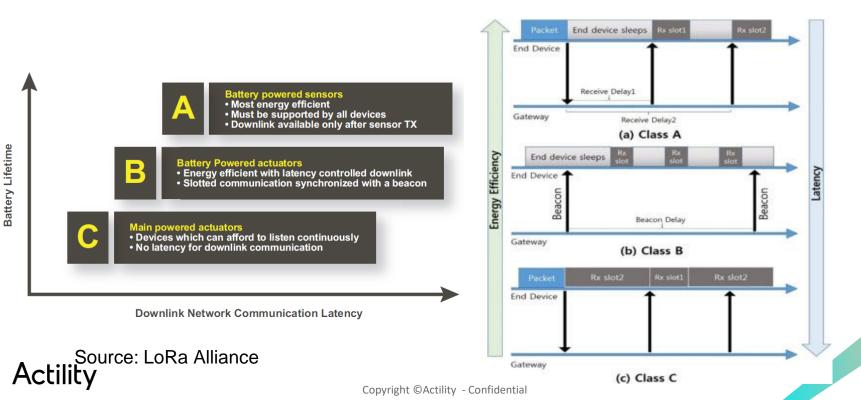
Market split for M2M migration

- U-LPWAN : Connections CAGR 181%, Revenue CAGR 159%
- L-LPWAN : Connections CAGR 145%, Revenue CAGR 128%


M2M Migration—Licensed versus Unlicensed Revenues

Riot Research, 2019

LoRaWAN Overview



LoRaWAN Network Architecture

LoRaWAN Device Classes

• 3 modes to optimize all IoT use cases

Multicast

LoRaWAN natively supports multicast/FUOTA in LoRaWAN 1.0.x

Benefits

- Minimize DL radio congestion for class B & C devices
- Dynamic session setup allows optimized
 Class A device power consumption
- Dynamic Multicast assignment is being developed

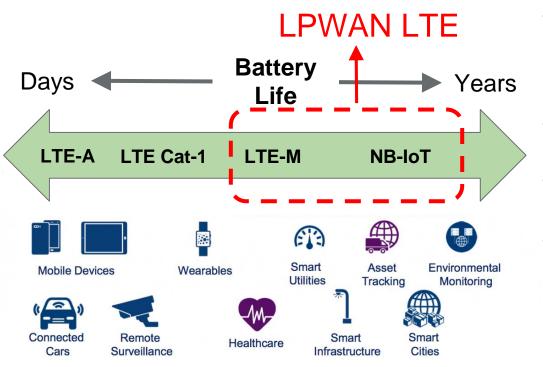
Use cases enabled

- ★ Power efficient device FW upgrade over the air
- ★ Massive Device Reconfiguration
- Synchronized device activation
- Emergency actions

3GPP support for multicast is only after Rel 14

Source:

https://www.qualcomm.com/news/onq/ 2017/06/15/lte-iot-starting-connectmassive-iot-today-thanks-emtc-and-nbiot


Actility

Copyright ©Actility - Confidential

Cellular IoT Overview

Cellular IoT Overview

• LTE Cat-M1 (1.4 MHz)

- Full Duplex Rate (UL/DL): 1 Mbps
- Half Duplex: 375 kbps
- LTE Cat-NB1 (180 kHz)
 - Rate (UL/DL): 200 kbps
- Modem design with reduced complexity and cost
- Enhanced Features for IoT
 - PSM
 - o eDRX
 - Support for NIDD

Link Budget Comparison for LoRaWAN Vs Mobile IoT

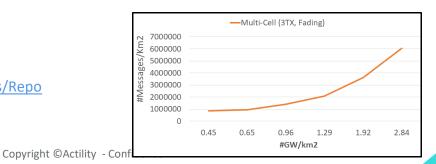
	Max Tx Power (dBm)	Link Budget (dB) or MCL
LoRaWAN (EU 868 MHz)	16.0 dBm	161.5
LoRaWAN (India 865 Mhz)	30 dBm	175.5
LoRaWAN (US 915 MHz)	30 dBm	170.2
LoRaWAN (China 470 MHz)	12.15 dBm	164.65
LTE Cat-M1 (Option 1*)	20 dBm	155.7
LTE Cat-M1 (Option 2*)	23 dBm	160.7
LTE Cat NB-IoT	23 dBm	164 (**)
Sigfox (UNB)	16.0 dBm	160

LoRAWAN is similar to NB-IoT and better than LTE Cat-M1 and it depends on region

*Link budget calculation for 3GPP Cat-M1 is based on different assumptions, as shown in the table Source: https://www.sierrawireless.com/resources/white-paper/coverage-analysis-lte-m-cat-m1/ ** 164 dB Link Budget for NB-IoT is reached using 64 repetitions

QoS Paradigm Comparison between LoRaWAN and Mobile IoT

Mobile IoT

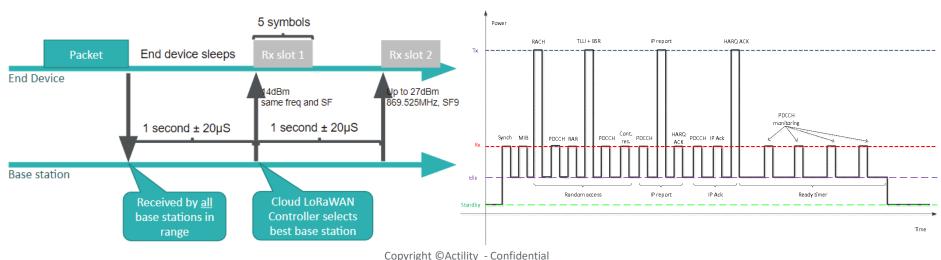

- Licensed Spectrum
- Interference only from its own deployment (reuse 1)
- Densification of network required using small cells as traffic grows
- Cost of Small-Cells incl. Backhaul (~5k USD)¹

1:<u>http://www.senzafiliconsulting.com/Portals/0/docs/Repo</u> <u>rts/SenzaFili_SmallCellWiFiTCO.pdf</u>

Actility

LoRaWAN

- Unlicensed Spectrum
- Interference from its own deployment + other technologies
- Densification of network (Macro-Diversity + ADR)
- Cost of Pico-Cell incl. backhaul (3G/4G/LTE-M) (~300 USD)



LoRaWAN Vs Mobile IoT Power Consumption

Synchronized RF PHY energy

- LoRaWAN is asynchronous
 - Device (class A) sends/receives only when needed
- LTE Cat-NB1/Cat-M1 is synchronous
 - Device has to wake up periodically to synchronize to the network

LTE NB1

LoRaWAN Class A

NB-IoT/Cat-M1 Vs LoRa Current Consumption

	TX Current	RX Current	Idle Current	Sleep Current	
LoRaWAN [3] TX Power=14 dBm (EU Regulations)	24-44 mA	12 mA	1.4mA	0.1uA	
NB-IoT (* U-Blox Sara-N2 [2])	74-220 mA	46 mA	6mA	3 uA	
LTE Cat-M1 (* U-blox Sara-R4 [1])	100-490 mA	*(not specified)	9 mA	8uA	

NB-IoT Current Consumption is <u>3-5X higher than LoRaWAN</u>

[1] Sara R4-Series Data sheet, LTE Cat-M1 / NB1 modules. <u>https://www.u-blox.com/sites/default/files/SARA-R4_DataSheet_%28UBX-16024152%29.pdf</u>
[2] SARA N2-Series Data Sheet, LTE Cat-NB1 modules. <u>https://www.u-blox.com/sites/default/files/SARA-N2_DataSheet_%28UBX-15025564%29.pd</u>
[3] Semtech SX1272/73 Datasheet (860 MHz to 1020 MHz Low Power Long Range Transceiver) <u>http://www.semtech.com/images/datasheet/sx1272.pdf</u>

NB-IoT Vs LoRa Airtime Comparison (50 Byte UL, No DL)

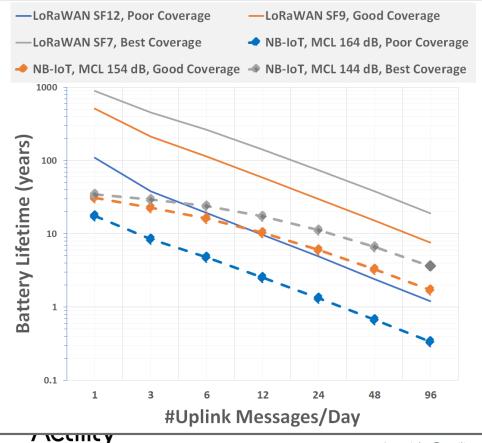
MCL/ (LoRaWAN SF)	144 dB / (SF7)		154 dB / (SF9)			164 dB / (SF12)			
	Tx (ms)	Rx (ms)	ldle(ms)	Tx (ms)	Rx(ms)	ldle(ms)	Tx(ms)	Rx (ms)	ldle(ms)
LoRaWAN	118	65	1500	367	238	1500	2793	1725	1500
NB-IoT ([1])	49	388	22223	311	565	22451	2190	2672	23387

[1] RAN1#82-BIS. NB-IOT - Battery lifetime evaluation <u>https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&c</u> <u>ontributionId=659236</u> NB-IoT Spends significant time in Idle/RX states compared to LoRaWAN due to synchronous nature of the protocol which negatively impacts battery life

NB-IoT Vs LoRaWAN (Energy Comparison, 50 Byte UL, No DL)

MCL/ (LoRaWAN SF)	144 dB / (SF7)		154 dB / (SF9)		164 dB / (SF12)	
	Energy of 1 msg (Joule)	Sleep Energy/day (Joule)	Energy of 1 msg (Joule)	Sleep Energy/day (Joule)	Energy of 1 msg (Joule)	Sleep Energy/day (Joule)
LoRaWAN [2]	0.03	0.03	0.07	0.03	0.42	0.03
NB-IoT [1]	0.13	1.3	0.29	1.3	1.50	1.3

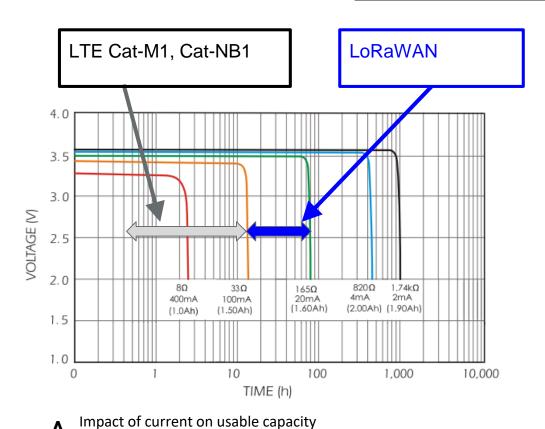
Energy of 1 message includes energy in (TX+RX+Idle States)


[1] RAN1#82-BIS. NB-IOT - Battery lifetime evaluation

https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=659236

Actility

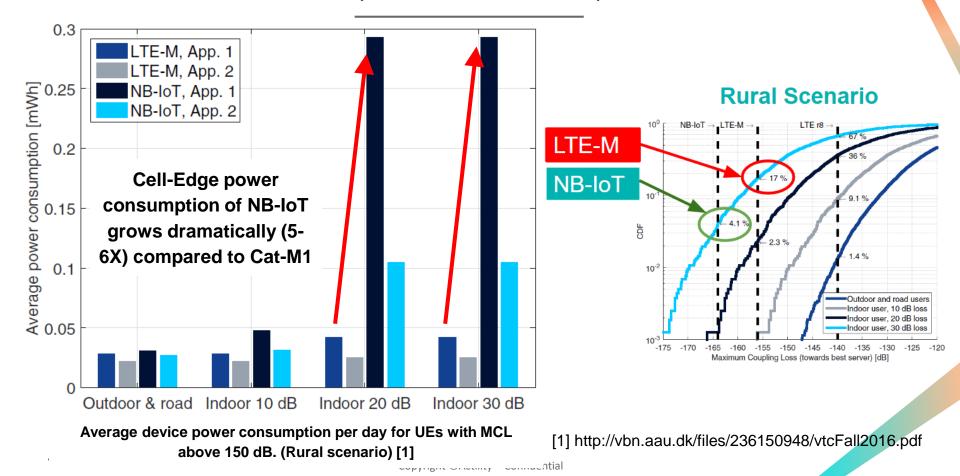
Copyright ©Actility - Confidential


Battery Lifetime Comparison

- Assuming Perfect battery with linear decay without impact of peak current on capacity
- LoRaWAN is 3-5X more power efficient (especially at Cell Edge/Poor Coverage Scenarios)
- LoRaWAN is best suited for very small infrequent messages due to <u>its simple and</u> <u>asynchronous nature</u>
- NB-IoT/Cat-M1 is most suited for premium high-bandwidth applications

Copyright ©Actility - Confidential

Peak current impact on battery lifetime



Battery chemistry and IoT :

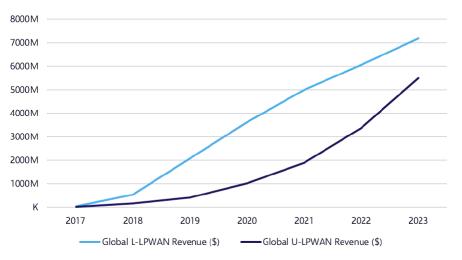
- LiPo (used in mobile phones) : Not possible due to ~2% self discharge rate per month.
- Alkaline : OK but internal resistance increases towards end of lifetime (cannot accommodate high to peak current <u>and</u> long lifetime) and at low temperatures.
- Lithium-Thionyl-Chloride (LTC) : more expensive, self-discharge about 3%/year (requires 2x the usable capacity for 15 years lifetime). Peak-current also impacts capacity.
- Coin cell (Wearables) : only suitable for LoRaWAN. They cannot provide high peak current for NB-IoT/LTE-M

A: From technical specification of ER14505M Lithium-thionyl Chloride Spiral Battery

Impact of power consumption for cell-edge users (NB-IoT Vs Cat-M1)

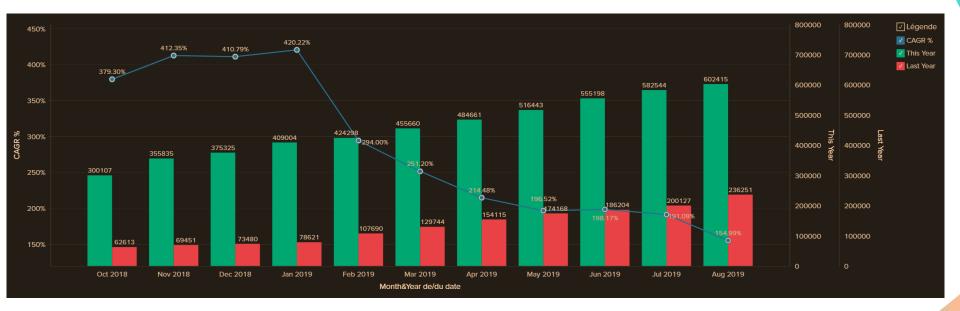
Conclusion

Strong Growth of LPWAN


2.2Bn LPWAN connexions by 2023 (GAGR 78%, 50% APAC, 17% EU, 15.5% US) 18.9Bn USD chipset & connectivity annual revenues (balanced across regions)

RIOT RESEARCH - THE RESEARCH ARM OF RIOT

Market split for M2M migration


- U-LPWAN : Connections CAGR 181%, Revenue CAGR 159%
- L-LPWAN : Connections CAGR 145%, Revenue CAGR 128%

M2M Migration—Licensed versus Unlicensed Revenues

Riot Research, 2019

LoRaWAN Devices (# per quarter & CAGR)

