


Table of Contents 

INTRODUCTION 

WHY NOSQL? 

NOSQL 101 

Types of NoSQL Databases 

What are the Advantages of NoSQL Over an RDBMS? 

Deciding Between an RDBMS and NoSQL 

A NoSQL Example – DataStax Enterprise 

What Makes DataStax Enterprise Ideal for Modern Cloud Applications 

Top Use Cases 

Architecture Overview 

Writing and Reading Data 

Data Distribution and Replication 

Automatic Data Distribution 

Replication Basics 

Multi -Data Center and Cloud Support 

Using DataStax Enterprise in Production Environments 

NoSQL and Hadoop: A Comparison 

DATA AND OBJECT MANAGEMENT 

Data Model Overview 

DSE Objects 

Cassandra Query Language 

Transaction Management 

Query and Management Tools 

SECURITY MANAGEMENT 

Authentication 

Permission Management 

Encryption 

Data Auditing 

MANAGING AVAILABILITY AND MULTIPLE DATA CENTERS 

How to Ensure Constant Availability 

Multi -Data Center and Cloud Options 



ANALYZING AND SEARCHING DATA 

Real Time and Batch Analytics 

External Hadoop and Spark Support 

Searching Data 

Workload Management for Analytics and Search 

BACKUP AND RECOVERY 

Using Replication and Multi-Data Center for Backup and Recovery 

Backing up DataStax Enterprise 

Restoring Data 

PERFORMANCE MANAGEMENT 

Monitoring Basics 

Advanced Command Line Performance Monitoring Tools 

Visual Database Monitoring 

Finding and Troubleshooting Problem Queries 

MIGRATING DATA 

ARCHITECT STRATEGIES FOR IMPLEMENTING NOSQL 

Evaluating NoSQL for Your Enterprise 

Technical Considerations 

Business Requirements 

Practical Guidelines for Selecting NoSQL vs. an RDBMS 

Deployment Considerations 

CONCLUSION 

ABOUT DATASTAX 

  



INTRODUCTION 

As an Enterprise Architect, your job is to help define, build, and manage your company's 

technology architecture for its single most important asset - its information – in order to 

meet the company’s business goals. 

The meteoric rise of modern cloud applications – applications that create and leverage 

real-time value and run at epic scale - has brought about a change in data management 

with an unprecedented transformation to the decades-old way that databases have been 

designed and operated. Requirements from cloud applications have pushed beyond the 

boundaries of the relational database management system (RDBMS) and have introduced 

a new type of database into the ARCHITECT's domain - NoSQL. 

As an Architect, you may naturally be skeptical of new database systems, having seen 

database engines such as object-oriented and OLAP databases come and go. Why should 

NoSQL be any different? Further, perhaps you've heard (and maybe even repeated) 

assertions about NoSQL databases like, 

NoSQL is not secure... 

NoSQL is not reliable... 

NoSQL is not scalable... 

NoSQL is not really being used by anyone in meaningful ways... 

Perhaps you've also asked yourself the following questions about NoSQL: 

Are NoSQL databases real and ready for serious applications? 

What kinds of administration and management work does NoSQL entail? 

How are security, backup and recovery, database monitoring and tuning handled? 

How do I create databases, objects, and read/write data without SQL? 

This guide was created to help answer all these questions and more. In the following 

pages, you'll learn exactly what NoSQL is, why it's needed, how it works, what it should 

be used for, and (just as importantly) when it shouldn't be used. 

You'll also learn how all the key areas of database design, creation, security, object 

management, backup/recovery, monitoring and tuning, data migrations, and more - are 

carried out in a NoSQL database like DataStax Enterprise, the best version of Apache 

Cassandra™. 

When you're finished, you'll understand why having NoSQL database skills makes you 

even more valuable as an Architect today. 

In fact, you may be interested to know that Architect salaries for those who possess 

NoSQL and other operational data skills are significantly higher than the average 

RDBMS Architect's salary, with Apache CassandraTM currently leading the way for the 

NoSQL jobs according to a 2016 survey by Dice. 

 

Now, let's get started. 

  



WHY NOSQL? 

The RDBMS has been the de-facto standard for managing data since it first appeared 

from IBM in the mid-1980s. The RDBMS really exploded in the 1990s with Oracle, 

Sybase, IBM DB2, Microsoft SQL Server, and other similar databases appearing in the 

data centers of nearly every enterprise - databases you likely use today. 

With the first wave of Web applications, open source relational database management 

systems (RDBMS) such as MySQL and Postgres emerged and became a standard at 

many companies that desired alternatives to expensive proprietary databases sold by 

vendors such as Oracle. 

However, it wasn't long before things began to change, and the application and data 

center requirements of key Internet players like Amazon, Facebook, and Google began to 

outgrow the RDBMS for certain types of applications. The need for more flexible data 

models that supported agile development methodologies and the requirements to 

consume large amounts of fast-incoming data from millions of cloud applications users 

around the globe - while maintaining extreme amounts of performance and uptime - 

necessitated the introduction of a new data management platform. 

Enter NoSQL. 

Today, with every company utilizing modern cloud applications, the data problems 

originally encountered by the Internet giants have become common issues for every 

company, including yours. This means that you and your peers in DevOps and 

Operations must realize that it is no longer a question of if you will be deploying and 

managing NoSQL database systems, but when, and how much of your company's data 

will eventually be stored on NoSQL platforms. 

 

NOSQL 101 

This chapter introduces the basics of NoSQL and then dives into an Architect’s 

perspective on the most scalable, distributed, high-performance, and reliable NoSQL 

database in the market today, DataStax Enterprise (DSE). 

 

Types of NoSQL Databases 

There are different types of NoSQL databases, with the primary difference characterized 

by their underlying data model and method for storing data. The main categories of 

NoSQL databases are: 

¶ Tabular - Also known as wide-column or wide-row stores, these databases store 

data in rows and users are able to perform some query operations via column-

based access. A wide-row store offers very high performance and a highly 

scalable architecture. Examples include: DSE, HBase, and Google BigTable. 

¶ Key/Value - These NoSQL databases are some of the least complex as all of the 

data within consists of an indexed key and a value. Examples include Amazon 

DynamoDB, Riak, and Oracle NoSQL database. Some tabular NoSQL databases, 

like DSE, can also service key/value needs.  



¶ Document - Expands on the basic idea of key-value stores where "documents" 

are more complex, in that they contain data and each document is assigned a 

unique key, which is used to retrieve the document. These are designed for 

storing, retrieving, and managing document-oriented information, oftentimes 

stored as JSON. Examples include MongoDB and CouchDB. Note that some 

RDBMS and NoSQL databases outside of pure document stores are able to store 

and query JSON documents. 

¶ Graph - Designed for highly complex and connected data, which outpaces the 

relationship and JOIN capabilities of an RDBMS. Graph databases are often 

exceptionally good at finding commonalities and anomalies among large datasets. 

Examples include: DataStax Enterprise Graph and Neo4J.  

 

One trend that is starting to emerge in both the NoSQL and RDBMS markets is the 

“multi-model” database. Most database management systems are organized around a 

single data model that determines how data can be organized, stored, and manipulated. 

By contrast, a multi-model database is designed to support multiple data models against a 

single, integrated backend. 

The value supplied by multi-model databases is that an enterprise doesn’t have to utilize 

multiple data management providers for applications that need to store parts of the 

system’s data in different data models, and thus the requirement to shard the application 

across different database platforms is removed.  

  

What are the Advantages of NoSQL Over an RDBMS? 

While there are hundreds of different "Not Only SQL" (NoSQL) databases offered today, 

each with its own particular features and benefits, what you should know from an 

Architect’s perspective is that a NoSQL database generally differs from a traditional 

RDBMS in the following ways: 

¶ Data model - while an RDBMS primarily handles structured data in a rigid data 

model, a NoSQL database typically provides a more flexible and fluid data model 

and can be more adept at serving the agile development methodologies used for 

modern cloud applications. Note that one misconception about NoSQL data 

models is that they do not handle structured data, which is untrue. Lastly, as 

noted above, some NoSQL engines are supporting multiple data models against a 

single backend.  

¶ Architecture – an RDBMS database is normally architected in a centralized, 

scale-up, master-slave fashion, and most NoSQL databases are master-slave in 

design as well (e.g. MongoDB, HBase). DSE is unique in that it operates in a 

distributed, scale-out, "masterless" manner (i.e. there is no 'master' node).  

¶ Data distribution model - because of their master-slave architectures, an 

RDBMS distributes data to slave machines that can act as read-only copies of the 

data and/or failover for the primary machine. By contrast, DSE is the NoSQL 

database that distributes data evenly to all nodes making up a database cluster and 

enables both reads and writes on all machines. Furthermore, the replication model 



of an RDBMS (including master-to-master) is not designed well for wide-scale, 

multi-geographical replication and synchronization of data between different 

locales and cloud availability zones – including hybrid cloud environments, 

whereas DSE’s replication was built from the ground up to handle all such things. 

¶ Availability model - an RDBMS typically uses a failover design where a master 

fails over to a slave machine.  DSE is the NoSQL technology with a masterless 

architecture and provides redundancy of both data and function on each node so 

that it offers continuous availability with no downtime versus simple high 

availability in the way an RDBMS does. 

¶ Scaling and Performance model - an RDBMS typically scales vertically by 

adding extra CPU, RAM, etc., to a centralized machine, whereas a NoSQL 

database like DSE scales horizontally by adding extra nodes that deliver 

increased scale and performance in a linear manner. 

 

There’s little doubt that relational database management systems (RDBMS) will be 

around for a long time and are exactly the right kind of database for handling centralized 

applications that require sophisticated transaction handling. But it’s also true that NoSQL 

databases are clearly better to support widely distributed cloud applications and their 

specific use cases.    

  



Deciding Between an RDBMS and NoSQL 

How do you decide when to use an RDBMS and when to use a specific type of NoSQL 

database? In short, an RDBMS is great for centralized applications that need ACID 

transactions and whose data fits well within the relational data model. The following 

chart provides a general comparison between the characteristics that point towards an 

RDBMS vs. those that signal a NoSQL database may be a better choice:  

 

 

RDBMS NoSQL Databases like DSE 

Master-slave architecture Masterless architecture 

Moderate velocity data High velocity data (devices, sensors, etc._ 

Data coming in from one/few locations Data coming in from many locations 

Primarily structured data Structured, with semi-structured 

Always strongly consistent Tunable consistency (eventual to strong) 

Complex/nested transactions Simple transactions 

Protect uptime via failover/log shipping Protect uptime via architecture 

High availability Continuous availability 

Deploy app central location / one server Deploy app everywhere / many servers 

Primarily write data in one location Write data everywhere / anywhere 

Primary concern: scale reads Scale writes and reads 

Scale up for more users/data Scale out for more users/data 

Maintain data volumes with purge High data volumes; retain as needed 

Transaction workloads   Mixed workloads of transactions and analytics 

One datacenter or cloud region Multi -data center, multi-cloud region, or hybrid cloud 

Relational data Multi -model (tabular, key/value, document, graph) 

 

 

Figure 1 ï RDBMS and NoSQL Comparison in general and additionally with respect to 

DataStax Enterprise specifically 

 

 

Looking at the data model requirements is another tactic to use when evaluating an 

RDBMS vs. NoSQL. Certain NoSQL databases require the denormalization of data and 

aren’t concerned with the relationships between data entities whereas others are built to 

handle complex and very intense data relationship scenarios:  

 

 
 

 Figure 2 ï The data model continuum by data complexity and connectedness 



RDBMS and Graph (NoSQL) databases are at the high end of the data model continuum 

where the relationships between data are concerned and are somewhat similar in their 

base characteristics:    

 

 
 

One of the key differences between a graph database (NoSQL) and an RDBMS is how 

relationships between entities/vertexes are prioritized and managed. While an RDBMS 

uses mechanisms like foreign keys to connect entities in a secondary fashion, edges in a 

graph database are of first order importance. As such, a graph database is more scalable 

and performant than an RDBMS when it comes to complex data that is highly connected 

(e.g. millions or billions of relationships).    

Unlike most other ways of displaying data, graphs are foundationally designed to express 

relatedness. Graph databases can uncover patterns that are difficult to detect when using 

traditional representations, such as RDBMS tables. 

 

Suggestions for when to use a graph database vs. an RDBMS is the following:  



 
 

A NoSQL Example – DataStax Enterprise  

Now that you have a background on how NoSQL differs from an RDBMS, let's look a 

little more closely from an Architect's point of view at how a NoSQL database like DSE 

functions and discuss the above characteristics in detail. 

DataStax Enterprise (DSE) is a massively scalable NoSQL database. It delivers 

continuous availability, linear scale performance, operational simplicity and easy data 

distribution across multiple data centers and cloud availability zones. DSE, built on the 

best version of Apache CassandraTM, was originally developed at Facebook and sports a 

design combining capabilities from Amazon's Dynamo and Google's Bigtable 

architectures.  

  



What Makes DSE Ideal for Modern Cloud Applications 

DataStax Enterprise provides a number of key features and benefits to facilitate the 

development and management of cloud applications: 

¶ Massively scalable architecture – Apache CassandraTM, at the core of DSE, has 

a masterless design where all nodes are the same, providing operational simplicity 

and easy scale out capabilities. 

¶ Multi-data center replication - DSE provides strong cross data center (in 

multiple geographies), multi-cloud availability zone support for writes/reads, 

including hybrid cloud deployments. 

¶ Active everywhere design - all DSE nodes may be written to and read from no 

matter where they are located. 

¶ Linear scale performance - online node additions produce predictable increases 

in performance. For example, if two nodes produce 200K transactions/sec, four 

nodes will deliver 400K transactions/sec, and eight nodes, 800K transactions/sec. 

¶ Continuous availability - DSE offers redundancy of both data and function, 

which supply no single point of failure and constant uptime. 

¶ Transparent fault detection and recovery - nodes that fail can easily be 

restored or replaced. 

¶ Flexible and dynamic data models - tabular, document, JSON, and graph.  

¶ Strong data protection - a commit log design ensures no data loss for incoming 

transactions. Also, built-in security with easy backup/restore keeps data protected. 

¶ Basic transaction support with tunable data consistency - DSE supports the 

atomicity, isolation and durability of transactions (including batch) with strong or 

eventual data consistency supplied across a widely distributed cluster. 

¶ Data compression - data compressed up to 80% without performance overhead 

helps save on storage costs. 

¶ CQL (Cassandra Query Language) - a SQL-like language that makes moving 

from an RDBMS easy. 

  



Top Use Cases 

While DSE is a comprehensive NoSQL data platform used for a variety of different 

applications in all industries, there are a number of use cases where the technology excels 

over most any other option. These include: 

¶ Cloud Applications – applications that require the wide distribution of data, no 

downtime, predictable performance no matter the location of the user, and easy 

scale make good targets for DSE. 

¶ Customer 360 – this is a single view of all customer touch points across all 

mediums.  DSE drives a system of engagement across channels and systems of 

record.  

¶ Personalization – customization of an experience tailored to a particular 

individual. This could include personal UX features, personal language in 

response bots, or other automated, intelligent, relevant, and timely interactions 

with a business and their individual customers. DataStax provides a personal 

experience constructed in real-time at the moment of interaction within the 

application. For example, with e-commerce, Personalization is about making sure 

that the landing page, search engine, checkout processes and all other core aspects 

of the shopping experience are tailored to a particular user in order to make it 

easier/more enjoyable/faster to navigate them. 

¶ Recommendations – introduces augmenting experiences and processes that add 

value despite a distraction from the user’s core action. For example, with e-

commerce, recommendations are about introducing additional products and 

services outside of what the customer is directly looking for in such a way that it 

is perceived as a value-add offer and not a distraction. 

¶ Fraud detection - solutions monitor and analyze data transactions to identify out-

of-the-ordinary patterns to act in real time. Required in a broad array of industries 

and use cases. 

¶ Identity management - authentication systems provide identity check and grant 

real-time access for customers to guarantee user security. These systems are also 

used to track and store entitlements such as movies, games, orders, account 

details or other resources that a user is entitled to access. 

¶ Inventory management - inventory management systems control the ordering, 

storage, and distribution of company goods for both internal and customer-facing 

uses. These goods may be something physical in a warehouse, or something non-

physical such as an event ticket. 

¶ Supply chain management - successful supply chains have an end-to-end 

understanding of their entire network while being able to connect with multiple 

partners and perform real-time and efficient operations.  

¶ Security – Whether understanding network attacks with vector analysis, or 

detecting intrusions, common security use cases consume a massive amount of 

data and must successfully surface that data in real-time to identify, and prevent 

or stop threats.   



¶ Internet of Things (IOT) – DSE is good for consuming and analyzing lots of 

fast-incoming data from devices, sensors and similar mechanisms that exist in 

many different locations. 

¶ Other time series based applications – because of DSE’s fast write capabilities 

and wide-row design, it is well suited for most any time series based application. 

 

Architecture Overview 

The architecture of DSE allows the database to scale and perform with no downtime. 

Rather than using a legacy RDBMS master-slave or a manual and difficult-to-maintain 

sharded design DSE, leveraging Apache Cassandra’s masterless “ring” distributed 

architecture, is elegant, and easy to set up and maintain. 

 

Figure 3 ï DSE sports a masterless ñringò architecture. 

In DSE, all nodes are the same; there is no concept of a master node, with all nodes 

communicating with each other via a gossip protocol. 

DSE’s built-for-scale architecture allows it to handle large amounts of data and thousands 

of concurrent users/operations per second, across multiple data centers, as easily as it can 

manage much smaller amounts of data and user traffic. To add more capacity, you simply 

add new nodes in an online fashion to an existing cluster. 

DSE’s architecture also means that, unlike other master-slave or sharded systems, it has 

no single point of failure and therefore offers true continuous availability and uptime. 

 



Writing and Reading Data 

One of DSE’s hallmarks is its fast I/O operation capability for both writing and reading 

data. 

Data is written to DSE in a way that provides both full data durability and high 

performance. From a high level perspective, data written to a DSE node is first recorded 

in a commit log and then written to a memory-based structure called a 14emTable. When 

a memtableôs size exceeds a configurable threshold, the data is flushed to disk and written 

to an Sstable (sorted strings table), which is immutable. 

 

Figure 4 ï The DSE write path. 

Because of the way DSE writes data, many Sstables can exist for a single DSE 

table/column family. A process called compaction for a node occurs on a periodic basis 

that coalesces multiple Sstables into one for faster read access. 

Reading data from DSE involves a number of processes that can include various memory 

caches and other mechanisms designed to produce fast read response times. 

For a read request, DSE consults a bloom filter that checks the probability of a table 

having the needed data. If the probability is good, DSE checks a memory cache that 

contains row keys and either finds the needed key in the cache and fetches the 

compressed data on disk, or locates the needed key and data on disk and then returns the 

required result set. 



 

Figure 5 ï The DSE read path. 

 

Data Distribution and Replication 

While the prior section provides a general overview of read and write operations in DSE, 

the actual I/O activity that occurs is somewhat more sophisticated, due to the data 

platform’s masterless architecture. Two concepts that impact read and write activity are 

the chosen data distribution and replication models. 

 

Automatic Data Distribution 

While an RDBMS and some NoSQL databases necessitate manual and developer-driven 

methods for distributing data across multiple machines that make up a database (i.e. 

sharding), DSE automatically distributes and maintains data across a cluster so your 

company’s DBAs don’t have to. 

DSE uses a partitioner to determine how data is distributed across the nodes that make up 

a database cluster. A partitioner is a hashing mechanism that takes a table row’s primary 

key, computes a numerical token for it, and then assigns it to one of the nodes in a 

cluster. 

While DSE has multiple partitioners that can be chosen, the default partitioner is one that 

randomizes data across a cluster and ensures an even distribution of all data. DSE also 

automatically maintains the balance of data across a cluster even when existing nodes are 

removed or new nodes are added to a system. 

 

Replication Basics 

Unlike many other database management systems, replication in DSE is very 

straightforward and simple to configure and maintain. Most DSE users agree that the 



replication model is one of the features that help the database stand out from other 

RDBMS or NoSQL options. 

A running DSE database cluster can have one or more keyspaces, which are analogous to 

a Microsoft SQL Server or MySQL database. It is at the keyspace level that replication is 

configured, allowing different keyspaces to have different replication models. 

DSE is able to replicate data to multiple nodes in a cluster, which helps ensure reliability, 

continuous availability and fast I/O operations. The total number of data copies that are 

replicated is referred to as the replication factor. For example, a replication factor (RF) of 

1 means that there is only one copy of each row in a cluster, whereas a replication factor 

of 3 means three copies of the data are stored across the cluster. 

Once a keyspace and its replication have been created, DSE automatically maintains that 

replication even when nodes are removed, added or go down and become unavailable for 

receiving data requests. This equates to there being no replication babysitting. 

DSE’s replication is both simple to configure and powerful in that it supports a wide 

range of replication capabilities such as replicating data to different hardware racks 

(reducing database downtime due to hardware failures) and multiple data centers in 

different geographic locations as well as the cloud. 

Multi-Data Center and Cloud Support 

A very popular aspect of DSE’s replication is its support for multiple data centers and 

cloud availability zones. Many users deploy DSE in a multi-data center and cloud 

availability zone manner to ensure constant uptime for their applications and to supply 

fast read/write data access in localized regions. 

You can easily set up replication so that data is replicated across many data centers with 

users being able to read and write to any data center they choose and the data being 

automatically synchronized across all centers. 

You can also choose how many copies of your data exist in each data center (e.g. 2 

copies in data center 1; 3 copies in data center 2) Hybrid deployments of part on-premise 

data centers and part cloud are also supported. 

 

Using DSE in Production Environments 

As an ARCHITECT, you have a responsibility to ensure that the database software you 

use will work and perform as expected in production environments. To provide that type 

of guarantee, most NoSQL databases have a commercial software vendor that offers a 

production-certified version of the database, which often times possess various enterprise 

features that the open source version does not. 

DataStax Enterprise (DSE) provides the following benefits over the open source version 

of Apache CassandraTM that help you manage, secure, and optimize your database 

systems: 

¶ A production-certified version of Apache CassandraTM that is heavily tested and 

ready for enterprise environments. 



¶ Multi -model database capabilities with support for the key value, tabular, JSON / 

Document, and graph data models, all of which inherit the capabilities of Apache 

CassandraTM and additional commercial functionality that follows.   

¶ Advanced security with external security software support, encryption and data 

auditing. 

¶ Integrated analytics, including integration with external Hadoop and Spark 

platforms. 

¶ Integrated enterprise search on stored data. 

¶ Workload isolation and data replication that ensures OLTP, analytics, and search 

workloads do not compete with each other for data or compute resources. 

¶ In-memory database option for both OLTP and analytic workloads. 

¶ Advanced replication that handles data distribution among different clusters in a 

hub-and-spoke fashion.  

¶ Tiered storage that provides automatic movement of data between different 

storage media (e.g. SSD’s, spinning disks).  

¶ Multi -instance functionality that assists with running multiple instances of the 

software on single, large servers.  

¶ Automatic management services that transparently automate numerous database 

maintenance and performance monitoring/management tasks. 

¶ Visual management and monitoring tools that work from any device (laptop, 

tablet, smart phone). 

¶ Around-the-clock expert support. 

¶ Certified software updates. 

¶ Managed service options 

 

NoSQL and Hadoop: A Comparison 

You’ve no doubt heard about Hadoop and perhaps your company is already using it to 

handle various new data warehousing projects. Perhaps you’re wondering how Hadoop 

differs from NoSQL.  

Apache HadoopTM is an open source software project that enables the distributed 

processing of large data sets, and uses a scale-out architecture that stores and processes 

data across many machines. Hadoop is an ecosystem umbrella term that encompasses 

many different software components. 

In general, Hadoop is not a database, but is instead a framework primarily devoted to 

handling modern batch analytics “data lake” use cases. Hadoop does offer a NoSQL 

database as part of its framework (Hbase), but it is used mostly for analytics situations. 

 

By contrast, a NoSQL database is used operational and transactional information and 

processes. 



 

Hadoop, as well as Spark are complementary to DSE. DSE is a mixed workload data 

platform that can handle both operational / transactional processes used for cloud 

applications as well as data analysis via its tight integration with both Hadoop and Spark. 

 

 

DATA AND OBJECT MANAGEMENT 

This section takes a look at the core DSE's data model, what data objects are used for 

managing data, CQL (Cassandra Query Language), and how transactions are handled in 

the database. 

 

Data Model Overview 

Achieving success with DSE almost always comes down to getting two things right: 

1. The data model 

2. The selected hardware, especially the storage subsystem 

DSE is a wide row / tabular database that uses a highly denormalized model designed to 

quickly capture and query data. There are no concepts of foreign keys, referential 

integrity, or joins in DSE. 

Although DSE has objects that resemble an RDBMS (e.g. tables, primary keys, indexes), 

data should not be modeled in a legacy entity-relationship-attribute fashion as is done 

with a relational database. Modeling data in DSE is done by understanding what 

questions you will need to ask the database up front, whereas in an RDBMS, you are 

likely not used to addressing such things until after all entities, relationships, and 

attributes are documented. 

Unlike an RDBMS that penalizes the use of many columns in a table, DSE provides high-

performance with tables that have hundreds of columns. You may be used to highly 

normalized, third normal form models that you translate into a set of physical tables and 

their accompanying indexes and such. With DSE, you will oftentimes instead have wide 

row tables with some data duplication between tables. 

Creating your physical objects, however, still looks very much like what you carry out in 

an RDBMS. For example, a new table defining users for an application might look like 

the following: 



 

DSE Objects 

The basic objects you will use in DSE include: 

¶ Keyspace - a container for data tables and indexes; analogous to a database in 

many relational database management systems (RDBMS). It is also the level at 

which replication is defined. 

¶ Table - somewhat like an RDBMS table only much more flexible and capable of 

handling all modern data types.  

¶ Primary key - used to uniquely identify a row in a table and also distribute a 

table's rows across multiple nodes in a cluster. 

¶ Index - similar to an RDBMS index in that it speeds read operations. 

¶ User - a login account used to access data objects. 

Cassandra Query Language 

Earlier versions of Cassandra solely used an interface called Thrift to create database 

objects and manipulate data. Today, the Cassandra Query Language (CQL) has become 

the primary interface used for interacting with a DSE database cluster. 

CQL very closely resembles SQL (Structured Query Language) used by all relational 

database management systems (RDBMS). Because of this similarity, your learning curve 

will be greatly reduced. 

DDL (e.g. CREATE, ALTER, DROP), DML (INSERT, UPDATE, DELETE, 

TRUNCATE), and query (SELECT) operations are all supported in the manner to which 

you are accustomed. 

CQL datatypes also reflect RDBMS syntax with numerical (int, bigint, decimal, etc.), 

character (ascii, varchar, etc.), date (timestamp, etc.), unstructured (blob, etc.), and 

specialized datatypes (JSON, etc.) being supported. 

Learn more about CQL on the documentation page at www.DataStax.com. 

 

http://www.datastax.com/


Transaction Management 

While DSE does not offer complex/nested transactions in the same way that your legacy 

RDBMS offer ACID transactions, it does offer the "AID" portion of ACID, in that data 

written is atomic, isolated, and durable. The "C" of ACID does not apply to DSE, as there 

is no concept of referential integrity or foreign keys. 

With respect to data consistency, DSE offers tunable data consistency across a database 

cluster. This means you can decide exactly how strong (e.g., all nodes must respond) or 

eventual (e.g., just one node responds, with others being updated eventually) you want 

data consistency to be for a particular transaction, including transactions that are batched 

together. This tunable data consistency is supported across single or multiple data centers, 

and you have a number of different consistency options from which to choose. 

Moreover, consistency can be handled on a per operation basis, meaning you can decide 

how strong or eventually consistent it should be per the SELECT, INSERT, UPDATE, 

and DELETE operation. For example, if you need a particular transaction available on all 

nodes throughout the world, you can specify that all nodes must respond before a 

transaction is marked complete. On the other hand, a less critical piece of data (e.g., a 

social media update) may only need to be propagated eventually, so in that case, the 

consistency requirement can be greatly relaxed. 

DSE also supplies "lightweight transactions" (or compare and set). Using and extending 

the Paxos consensus protocol (which allows a distributed system to agree on proposed 

data modifications without the need for any one 'master' database or two-phase commit), 

DSE offers a way to ensure a transaction isolation level similar to the serializable level 

offered by an RDBMS for situations that need it. 

 

Query and Management Tools 

As an ARCHITECT coming from the RDBMS world, you likely use many command line 

and visual tools for interacting with the databases you manage. The same kind of tools 

are available to you with DSE. 

Various command line utilities are provided for handling administration functions (e.g. 

the nodetool utility), loading data, and using CQL to create and query database objects 

(the CQL shell, which is much like Oracle's SQL*Plus or the MySQL shell). 

In addition, graphical tools are provided for running CQL commands against database 

clusters (e.g. DataStax DevCenter, DataStax Studio) and visually 

creating/managing/monitoring your clusters (DataStax OpsCenter). 



 

Figure 6 - DataStax OpsCenter, used for visual database administration. 

 

Figure 7 - DataStax DevCenter, used for visually querying databases. 

  



SECURITY MANAGEMENT 

As an ARCHITECT, data security is one of your top priorities. One of the myths of 

NoSQL databases like DSE is that they don't offer the security needed in enterprise 

production environments. In this section, we'll review DSE's security capabilities. 

 

Authentication 

DSE supports internal-based authentication that allows you to easily create users who can 

be authenticated to DSE database clusters. You'll find the authentication framework 

extremely familiar - it uses the RDBMS-style CREATE/ALTER/DROP USER 

commands to create/manage with passwords that will then be internally handled by DSE. 

A default superuser, 'cassandra', is supplied by default to initially enable the security 

authentication definition process. 

You can also use external, 3rd party security packages like Kerberos, LDAP, and Active 

Directory to manage security in DataStax Enterprise. 

 

Permission Management 

Object permission/authorization capabilities for DSE utilize the very familiar 

GRANT/REVOKE security paradigm - something you should have no problem using. 

Control over DDL, DML, and SELECT operations are all handled via the granting and 

revoking of user privileges. 

Note that a GRANT may be done with or without the GRANT OPTION, which allows 

the user receiving the grant to provide the same privileges on that object to other users 

just as how it occurs in the RDBMS world. 

 

Encryption 

There are multiple levels of encryption offered in DataStax Enterprise that you can use to 

protect data. First, DSE includes an optional encrypted form of communication from a 

client machine to a database cluster. Client to server SSL ensures data in flight is not 

compromised and is securely transferred back/forth from client machines. 

Next, node-to-node encryption can be used as well to ensure data is protected as it is 

transferred between nodes in a database cluster. 

Lastly, transparent data encryption (TDE) in DataStax Enterprise protects data at rest 

from being stolen and used in an unauthorized manner. You can encrypt tables with AES 

128 being the default, although other encryption algorithms can be used. 

Encryption is transparent to all end user activities; data may be read, inserted, updated, 

etc., with nothing having to change on the application end. 

 

Data Auditing 

If needed, you can configure data auditing so you can understand what user activities 

took place on a particular node or entire cluster. Data auditing allows for a "who looked 

at what/when, who changed what/when" type of documentation that many large-scale 



enterprises need to have in order to comply with various internal or external security 

policies. 

The granularity of activities that can be audited include: 

• All activity (DDL, DML, queries, errors) 

• DML only 

• DDL only 

• Security changes (e.g. assigning/revoking privileges, dropping users) 

• Queries only 

• Errors only (e.g. login failures) 

You can also omit certain keyspaces from being audited if you choose and only focus on 

keyspaces in production or those that are of particular interest. Audit data can be written 

to log files or DSE tables and queried via CQL. 

 

MANAGING AVAILABILITY AND MULTIPLE DATA CENTERS 

Another key aspect of your job as an ARCHITECT is to ensure the databases are always 

available for the applications that use them. One thing you will like about DSE is that 

ensuring constant uptime is easy. There is no need for specialized, add-on log shipping 

software such as Oracle Dataguard. 

Further, distributing data to multiple geographies and across various cloud providers is 

simple and straightforward with DSE. 

 

How to Ensure Constant Uptime 

As previously discussed, DSE sports a masterless architecture where all nodes are the 

same; and it has been built from the ground up with the understanding that outages and 

hardware failures will occur. To overcome those and similar issues, DSE delivers 

redundancy in both data and function to a database cluster with all nodes being the same. 

Where data operations are concerned, any node in a cluster may be the target for both 

reads and writes. Should a particular node go down, there is no hiccup in the cluster at all, 

as any other node may be written to, with reads served from other nodes holding copies 

of the downed node's data. 

To ensure constant access to data, you should configure DSE's replication to keep 

multiple copies of data on the nodes that comprise a database cluster. The number of data 

copies is completely up to you, with three being the most commonly used in production 

DSE environments. 

Should a node go down, new or updated information is simply written to another node 

that keeps a copy of that data. When the downed node is brought back online, it 

automatically syncs with other nodes holding its data so that it is brought back up to date 

in a transparent fashion. 

 



Multi-Data Center and Cloud Options 

DSE is the leading distributed database for multi-data center and cloud support. Many 

production DSE systems consist of a database cluster that spans multiple physical data 

centers, cloud availability zones, or a combination of both. Should a large outage occur in 

a particular geographical region, the database cluster continues to operate as normal with 

the other data centers assuming the operations previously directed at the now downed 

data center or cloud zone. Once the downed data center comes back online, it syncs with 

the other data centers and makes itself current. 

 

Figure 8 - A single DSE cluster can span multiple data centers and the cloud. 

An additional benefit of having a single cluster that spans multiple data centers and 

geographies is that data can be read and written to incredibly quickly in each location, 

thus keeping performance very high for the customers it serves in those locations. 

 



ANALYZING AND SEARCHING DATA 

Many applications have requirements that their underlying transactional database easily 

service analytic and search operations. As an ARCHITECT, you are likely familiar with 

analytic capabilities that can be run via SQL and full-text search options in an RDBMS, 

and might wonder how the same things are handled in DSE. 

 

Real Time and Batch Analytics 

Because DSE has a distributed, shared-nothing architecture, the framework for running 

analytics on it compared to a centralized RDBMS will be different. 

There are two options in DataStax Enterprise that allow you to run analytic operations 

easily on DSE data. You can run both real-time and batch (i.e. longer running) analytics 

on data via the platform's built-in components that utilize Apache Spark for analytics 

work. 

The analytics capability in the platform provides you with a number of the SQL functions 

and abilities that you are used to in the RDBMS world (e.g. joins, aggregate functions). 

In addition, analytics can be run across multiple data centers and cloud availability zones. 

Built-in continuous availability options are also included. 

 

External Hadoop and Spark Support 

You also have the ability to connect the data in DataStax Enterprise to an external 

Hadoop and/or Spark cluster and run analytic queries on data that combines both the 

operational data in DSE with historical data stored in a Hadoop deployment such as 

Cloudera or Hortonworks (e.g. a single query can join a DSE table with a Hadoop 

object). If you have used RDBMS connection options such as Oracle's database links or 

Microsoft SQL Server's linked servers to integrate external database systems, the concept 

is somewhat similar. 

 

Searching Data 

Some architects still shard their systems and use something like DSE for operational data 

management and a separate system and set of software for search operations. As an 

ARCHITECT, you’d likely prefer to have everything under one roof.  

DataStax Enterprise supplies DSE Search, which uses Apache SolrTM as its foundation to 

manage search tasks. With DSE Search, you don’t have to shard your application and you 

have the typical search bases covered including full-text search, hit highlighting, faceted 

search, rich document (e.g., PDF, Microsoft Word) handling and geospatial search. 

Search operations can scale out across multiple nodes so you can add more nodes 

dedicated to search tasks when the need arises. Multi-data center and cloud support is 

built in, as is redundancy for continuous availability. 

 

Workload Management for Analytics and Search 

When enabling analytics and search on a database cluster, you have a number of 

configuration options available. If you choose, you can run transactional (OLTP), 

analytics and search operations on all nodes in a database cluster. 



Another deployment methodology includes separating OLTP, analytics, and search 

workloads so that each runs on its own series of nodes. This strategy ensures that 

differing workloads do not compete with each other for either compute or data resources. 

Replication can be set up between all nodes so that data is transparently replicated to each 

set of nodes without manual intervention. 

This translates into you not having to worry about complex ETL jobs that transfer data 

between different systems, as you might be used to doing with an RDBMS. 

This also holds true if you are running graph database operations in a cluster – 

operational, analytical and search tasks can either be combined or separated across 

different nodes.  

 

BACKUP AND RECOVERY 

This section describes how backup and recovery processes work on a NoSQL database 

like DSE. 

 

Using Replication and Multi-Data Center for Backup and Recovery 

Some administrators simply use DSE's built-in replication and multi-data center 

capabilities for backup. Because the functionality is native to DSE, there is no need for 

add-on software (e.g. Oracle Dataguard). Since replication is so easy to use, some 

ARCHITECT's just create one or more physical or virtual data centers for a cluster and 

utilize them for disaster recovery purposes. 

While such a strategy can be satisfactory for some situations, it is important to note that it 

will not protect you in cases where large amounts of data are deleted, tables are dropped, 

and other similar unintended actions are carried out - such activities will be replicated and 

applied to the other data centers. 

 

Backing up DataStax Enterprise  

DSE allows you easily backup all keyspaces in a cluster, certain selected keyspaces, or 

only desired tables in a keyspace. A backup is called a snapshot in DSE. 

You can takes snapshots of your cluster via either a command line utility or visually 

through DataStax OpsCenter. While you can script your own backups via command line 

utilities, OpsCenter provides an easy way to design and schedule your backups. 

 

Figure 9 - DataStax OpsCenter's backup interface. 



Note that you can also customize backups in OpsCenter by writing and including scripts 

that run both before and after a backup. 

Lastly, incremental (only new or changed data versus full) backups are also supported for 

DSE, although it’s not exactly the same as with an RDBMS. An incremental backup will 

backup only changed SStables vs. change rows as in an RDBMS.  

 

Restoring Data 

Database recovery operations can be carried out with either command line utilities or 

visually through DataStax OpsCenter. Restores can be full, utilize incremental backups, 

and also be object-level if needed (e.g. you can only restore one backed up table versus 

all tables). 

 

Figure 10 - Restoring a keyspace with OpsCenter. 

OpsCenter simplifies restore operations and handles restore tasks on all affected nodes. 

 

PERFORMANCE MANAGEMENT 

Monitoring, troubleshooting, and tuning databases are a top priority for your company’s 

DBA. This section details how you can carry out your performance management tasks on 

a NoSQL database like DSE. 

 

Monitoring Basics 

There are a number of command line utilities that enable you to get a status of your 

database clusters as well as general metrics for the network, objects and I/O operations 

both at a high level and low level (e.g. table) fashion. For example, the DSE nodetool 

utility lets you quickly determine the up/down status and current data distribution of a 

cluster: 



 

Figure 11 - Checking a cluster's status with the nodetool utility. 

 

Advanced Command Line Performance Monitoring Tools 

From a performance metrics standpoint, DSE delivers many different statistics that can 

be accessed in various ways. If you are coming from an RDBMS like Oracle or Microsoft 

SQL Server and are used to performance data dictionaries like Oracle's V$ views or SQL 

Server' dynamic management tables, the most familiar interface for you is the one 

supplied by DataStax Enterprise's Performance Service. 

The Performance Service collects, organizes, and maintains an in-depth diagnostic data 

dictionary for each cluster. It consists of various tables that can be accessed via any CQL 

utility (e.g. the CQL shell utility, DataStax DevCenter) and gives you both high-level and 

detailed performance views of how well a cluster is running. 

The Performance Service maintains the following levels of performance information: 

¶ System level - supplies general memory, network and thread pool statistics. 

¶ Cluster level - provides metrics at the cluster, data center and node level. 

¶ Database level - provides drill down metrics at the keyspace, table and table-per-

node level. 

¶ Table histogram level - delivers histogram metrics for tables being accessed. 

¶ Object I/O level - supplies metrics concerning 'hot objects' and data on what 

objects are being accessed the most. 

¶ User level - provides metrics concerning user activity, top users (those 

consuming the most resources on the cluster) and more. 

¶ Statement level - captures queries that exceed a certain response time threshold 

along with all their relevant metrics. 

You can configure the service to collect nothing, all, or selected performance metrics for 

the above categories. Once the service has been configured and is running, statistics are 

populated in their associated tables and stored in a special keyspace (dse_perf). You can 

then query the various performance tables to get statistics such as the I/O metrics for 

certain objects: 



 

 

(2rows) 



 

Visual Database Monitoring 

In addition to monitoring your database clusters from the command line, you can also 

easily check the health of all clusters you're managing visually by using DataStax 

OpsCenter. OpsCenter gives you both global, at-a-glance dashboards that help you 

understand how all clusters under your control are doing, as well as drill down 

capabilities into each cluster and its individual nodes. 

A global dashboard helps you understand how well all clusters are running and if there 

are any alerts or issues for one or more clusters that need your attention: 

 

Figure 12 - Checking OpsCenter's global cluster dashboard. 

From the global dashboard, you can drill down into each individual cluster and create 

customized monitoring dashboards for the performance metrics you care about the most: 

 

Figure 13 - Examining performance metrics for a single database cluster. 

You can also create proactive alerts that notify you far in advance of a problem actually 

occurring in one of your clusters: 



 

Figure 14 - Creating an alert in OpsCenter. 

In addition, you can utilize built-in expert services like the Best Practice service that will 

scan your clusters and provide expert advice on how to configure and tune things for 

better uptime and performance: 

 

Figure 15 - OpsCenter's Best Practice service. 

These and other capabilities in OpsCenter help monitor and tune database clusters via any 

Web browser (laptop, tablet, smart phone) no matter if they are in your own data center 

or are running on one of the cloud providers. 

  



 

Finding and Troubleshooting Problem Queries 

You’re sometimes called upon to locate a database's worst running queries that slow the 

performance of the system as a whole. You'll find this isn't hard to do with DSE. 

First, you can use the DataStax Enterprise Performance Service to automatically capture 

long-running queries (based on response time thresholds you specify) and then query a 

performance table that holds those statements: 

 

In addition, there is a background query tracing utility available that you can use on an 

ad-hoc basis. You can choose to trace all statements coming into a database cluster or 

only a percentage of them, and then look at the results. The trace information is stored in 

the systems_traces keyspace that holds two tables: sessions and events, which can be 

easily queried to answer questions such as what the most time-consuming query has been 

since a trace was started, and much more. 

You can also use the tracing utility much in the same way you do an EXPLAIN PLAN on 

an RDBMS query. For example, to understand how a DSE cluster will satisfy a single 

CQL INSERT statement, you would enable the trace utility from the CQL command 

shell, issue your query, and review the diagnostic information provided: 



 



With DSE's tracing capabilities, OpsCenter's visual monitoring, DataStax Enterprise's 

Performance service and general command line monitoring tools, you will have most, if 

not all, of the typical performance tools at your disposal with DSE as you do today with 

your favorite RDBMS. 

 

MIGRATING DATA 

Moving data from an RDBMS or other database to DSE is generally quite easy. The 

following options exist for migrating data to DSE: 

¶ COPY command - CQL provides a copy command (very similar to Postgres) 

that is able to load data from an operating system file into a DSE table.  

¶ Bulk loader - this utility is designed for more quickly loading a DSE table with a 

file that is delimited in some way (e.g. comma, tab, etc.) Note: there is a separate 

bulk loader available for DSE Graph.  

¶ ETL tools - there are a variety of ETL tools (e.g. Informatica) that support DSE 

as both a source and target data platform. Many of these tools not only extract and 

load data but also provide transformation routines that can manipulate the 

incoming data in many ways. A number of these tools are also free to use (e.g. 

Pentaho, Jaspersoft, Talend). 

 

ARCHITECT STRATEGIES FOR IMPLEMENTING NOSQL 

This section provides basic checklists to use when evaluating a NoSQL database for 

production environments, guidelines for deciding when NoSQL should be deployed 

versus an RDBMS and what deployment scenarios are most common. 

 

Evaluating NoSQL for Your Enterprise 

Although not exhaustive, below are technical and business considerations designed to ask 

the right questions when evaluating whether a particular NoSQL database is suited for 

your production environment: 



Technical Considerations 

¶ Can the NoSQL database serve as the primary data source for the intended online 

application? 

¶ How safe is the NoSQL database where the possibility of losing critical data is 

concerned? Are writes durable in nature by default so that data is safe? 

¶ Is the NoSQL database fault tolerant (i.e., has no single point of failure) and is it 

capable of providing not just high availability, but continuous availability? 

¶ Can the NoSQL database easily replicate data between the same and multiple data 

centers, as well as different cloud availability zones? 

¶ Does the NoSQL database offer read/write anywhere capabilities (i.e. can any 

node in the cluster be written to and read from)? 

¶ Does the NoSQL database provide a robust security feature set? 

¶ Does it support easy-to-create and manage backup and recover procedures? 

¶ Does the NoSQL database require or remove the need for special caching layers? 

¶ Is the NoSQL database capable of managing "big data" and delivering high 

performance results regardless of data size? 

¶ Does the NoSQL database offer linear scalability where adding new nodes is 

concerned? 

¶ Can new nodes be added and removed online (i.e. without business impact)? 

¶ Does the NoSQL database support key platforms/developer languages? 

¶ Does the NoSQL database provide an SQL-like query language? 

¶ Can the NoSQL database run on commodity hardware with no special hardware 

requirements? 

¶ Is the NoSQL database easy to implement and maintain for large deployments? 

¶ Does the NoSQL database provide data compression that supplies real storage 

savings? 

¶ Can analytic operations be run easily on the NoSQL database? 

¶ Can the NoSQL database easily interface with and support modern data 

warehouses or lakes that utilize Hadoop? 

¶ Can search operations and functions be easily and directly carried out on the 

NoSQL database? 

¶ Can the NoSQL database provide workload isolation between online, analytic, 

and search operations in a single application? 

¶ Does the database have solid command-line and visual tools for development, 

administration, and performance management? 



Business Requirements 

¶ Is the NoSQL solution backed by a commercial entity? 

¶ Does the commercial entity provide enterprise 24x7 support and services? 

¶ Does the NoSQL solution have professional online documentation? 

¶ Does the NoSQL solution have referenceable customers across a wide range of 

industries that use the product in critical production environments? 

¶ Does the NoSQL database have an attractive cost/pricing structure? 

¶ If open source, does the NoSQL database have a thriving open source 

community? 

 

Practical Guidelines for Selecting NoSQL vs. an RDBMS 

How do you determine whether a NoSQL database like DSE or DSE Graph should be 

used for all or part of an application versus an RDBMS? Some basic questions to ask 

include:  

¶ Do you need a more flexible data model to manage data that goes beyond the 

RDBMS table/row data structure and instead includes a combination of 

structured, semi-structured and unstructured data? 

¶ Do you find that complex JOIN operations are overwhelming your RDBMS and 

response times are slow because of them?  

¶ Do you care more about the value derived from the relationships that form 

between the tables vs. the tables themselves?  

¶ Do you need continuous availability with redundancy in both data and function 

across one or more locations versus simple failover for the database? 

¶ Do you need a database that runs over multiple data centers / cloud availability 

zones? 

¶ Do you need to handle high velocity data coming in via sensors, mobile devices, 

and the like, and have extreme write speed and low latency query speed? 

¶ Do you need to go beyond single machine limits for scale-up and instead go to a 

scale-out architecture to support the easy addition of more processing power and 

storage capacity? 

¶ Do you need to run different workloads (e.g. online, analytics, search) on the 

same data without needing to manually ETL the data to separate 

systems/machines? 

¶ Do you need to manage a widely distributed system with minimal staff? 



Deployment Considerations 

From a practical perspective, as an architect, how do you go about actually moving to 

NoSQL and implementing your first application? In general, there are three ways to 

deploy a NoSQL database like Cassandra: 

1. New applications: many begin with NoSQL by choosing a new application and 

starting from the ground up. Such an approach mitigates the issues of application 

rewrites, data migrations, etc. 

2. Augmentation: some choose to augment an existing system by adding a NoSQL 

component to it. This oftentimes happens with applications that have outgrown an 

RDBMS due to scale problems, the need for better availability, or other issues. 

Parts of the existing system continue to use the existing RDBMS whereas other 

components of the application are modified to utilize the NoSQL database. 

3. Full Rip-Replace: for systems that simply are proving too costly from an 

RDBMS perspective to keep, or are breaking in major ways due to increases of 

user concurrency, data velocity, or data volume from cloud applications, a full 

replacement is done with a NoSQL database. 

 

 

CONCLUSION 

This guide has been designed to provide you with a preliminary understanding from an 

ARCHITECT perspective on the basics of NoSQL, and how a NoSQL database like 

DataStax Enterprise differs from an RDBMS like Oracle, SQL Server, and MySQL. It 

has been written to supply you with an overview of how you will go about designing, 

managing, deploying, and monitoring DSE or multi-model database systems. 

To find out more about DataStax, and to obtain downloads of DataStax Enterprise 

software, visit www.datastax.com or send an email to info@datastax.com. 

  

mailto:info@datastax.com


ABOUT DATASTAX 

DataStax, the leading provider of data management for cloud applications, accelerates the 

ability of enterprises, government agencies, and systems integrators to power the 

exploding number of cloud applications that require data distribution across datacenters 

and clouds, by using our secure, operationally simple platform built on the best version of 

Apache Cassandra™.  

 

With more than 500 customers in over 50 countries, DataStax is the database technology 

of choice for the world’s most innovative companies, such as Netflix, Safeway, ING, 

Adobe, Intuit, Target and eBay. Based in Santa Clara, Calif., DataStax is backed by 

industry-leading investors including Comcast Ventures, Crosslink Capital, Lightspeed 

Venture Partners, Kleiner Perkins Caufield & Byers, Meritech Capital, Premji Invest and 

Scale Venture Partners. For more information, visit DataStax.com or follow us 

@DataStax.   06.18.16 


	Types of NoSQL Databases
	What are the Advantages of NoSQL Over an RDBMS?
	Deciding Between an RDBMS and NoSQL
	A NoSQL Example – DataStax Enterprise
	What Makes DataStax Enterprise Ideal for Modern Cloud Applications
	Top Use Cases
	Architecture Overview
	Writing and Reading Data
	Data Distribution and Replication
	Automatic Data Distribution
	Replication Basics
	Multi-Data Center and Cloud Support
	Using DataStax Enterprise in Production Environments
	NoSQL and Hadoop: A Comparison
	Data Model Overview
	DSE Objects
	Cassandra Query Language
	Transaction Management
	Query and Management Tools
	Authentication
	Permission Management
	Encryption
	Data Auditing
	How to Ensure Constant Availability
	Multi-Data Center and Cloud Options
	Real Time and Batch Analytics
	External Hadoop and Spark Support
	Searching Data
	Workload Management for Analytics and Search
	Using Replication and Multi-Data Center for Backup and Recovery
	Backing up DataStax Enterprise
	Restoring Data
	Monitoring Basics
	Advanced Command Line Performance Monitoring Tools
	Visual Database Monitoring
	Finding and Troubleshooting Problem Queries
	Evaluating NoSQL for Your Enterprise
	Technical Considerations
	Business Requirements
	Practical Guidelines for Selecting NoSQL vs. an RDBMS
	Deployment Considerations
	INTRODUCTION
	WHY NOSQL?
	NOSQL 101
	Types of NoSQL Databases
	There are different types of NoSQL databases, with the primary difference characterized by their underlying data model and method for storing data. The main categories of NoSQL databases are:
	 Tabular - Also known as wide-column or wide-row stores, these databases store data in rows and users are able to perform some query operations via column-based access. A wide-row store offers very high performance and a highly scalable architecture....
	 Key/Value - These NoSQL databases are some of the least complex as all of the data within consists of an indexed key and a value. Examples include Amazon DynamoDB, Riak, and Oracle NoSQL database. Some tabular NoSQL databases, like DSE, can also ser...
	 Document - Expands on the basic idea of key-value stores where "documents" are more complex, in that they contain data and each document is assigned a unique key, which is used to retrieve the document. These are designed for storing, retrieving, an...
	 Graph - Designed for highly complex and connected data, which outpaces the relationship and JOIN capabilities of an RDBMS. Graph databases are often exceptionally good at finding commonalities and anomalies among large datasets. Examples include: Da...
	One trend that is starting to emerge in both the NoSQL and RDBMS markets is the “multi-model” database. Most database management systems are organized around a single data model that determines how data can be organized, stored, and manipulated. By co...
	The value supplied by multi-model databases is that an enterprise doesn’t have to utilize multiple data management providers for applications that need to store parts of the system’s data in different data models, and thus the requirement to shard the...
	What are the Advantages of NoSQL Over an RDBMS?
	 Data model - while an RDBMS primarily handles structured data in a rigid data model, a NoSQL database typically provides a more flexible and fluid data model and can be more adept at serving the agile development methodologies used for modern cloud ...
	 Architecture – an RDBMS database is normally architected in a centralized, scale-up, master-slave fashion, and most NoSQL databases are master-slave in design as well (e.g. MongoDB, HBase). DSE is unique in that it operates in a distributed, scale-o...
	 Data distribution model - because of their master-slave architectures, an RDBMS distributes data to slave machines that can act as read-only copies of the data and/or failover for the primary machine. By contrast, DSE is the NoSQL database that dist...
	 Availability model - an RDBMS typically uses a failover design where a master fails over to a slave machine.  DSE is the NoSQL technology with a masterless architecture and provides redundancy of both data and function on each node so that it offers...
	 Scaling and Performance model - an RDBMS typically scales vertically by adding extra CPU, RAM, etc., to a centralized machine, whereas a NoSQL database like DSE scales horizontally by adding extra nodes that deliver increased scale and performance i...
	There’s little doubt that relational database management systems (RDBMS) will be around for a long time and are exactly the right kind of database for handling centralized applications that require sophisticated transaction handling. But it’s also tru...
	Deciding Between an RDBMS and NoSQL
	A NoSQL Example – DataStax Enterprise
	What Makes DSE Ideal for Modern Cloud Applications
	Top Use Cases
	Architecture Overview
	Figure 3 – DSE sports a masterless “ring” architecture.
	Writing and Reading Data
	Figure 4 – The DSE write path.
	Figure 5 – The DSE read path.
	Data Distribution and Replication
	Automatic Data Distribution
	Replication Basics
	Multi-Data Center and Cloud Support
	Using DSE in Production Environments
	 A production-certified version of Apache CassandraTM that is heavily tested and ready for enterprise environments.
	 Multi-model database capabilities with support for the key value, tabular, JSON / Document, and graph data models, all of which inherit the capabilities of Apache CassandraTM and additional commercial functionality that follows.
	 Advanced security with external security software support, encryption and data auditing.
	 Integrated analytics, including integration with external Hadoop and Spark platforms.
	 Integrated enterprise search on stored data.
	 Workload isolation and data replication that ensures OLTP, analytics, and search workloads do not compete with each other for data or compute resources.
	 In-memory database option for both OLTP and analytic workloads.
	 Advanced replication that handles data distribution among different clusters in a hub-and-spoke fashion.
	 Tiered storage that provides automatic movement of data between different storage media (e.g. SSD’s, spinning disks).
	 Multi-instance functionality that assists with running multiple instances of the software on single, large servers.
	 Automatic management services that transparently automate numerous database maintenance and performance monitoring/management tasks.
	 Visual management and monitoring tools that work from any device (laptop, tablet, smart phone).
	 Around-the-clock expert support.
	 Certified software updates.
	 Managed service options
	NoSQL and Hadoop: A Comparison
	DATA AND OBJECT MANAGEMENT
	Data Model Overview
	1. The data model
	2. The selected hardware, especially the storage subsystem
	DSE Objects
	 Keyspace - a container for data tables and indexes; analogous to a database in many relational database management systems (RDBMS). It is also the level at which replication is defined.
	 Table - somewhat like an RDBMS table only much more flexible and capable of handling all modern data types.
	 Primary key - used to uniquely identify a row in a table and also distribute a table's rows across multiple nodes in a cluster.
	 Index - similar to an RDBMS index in that it speeds read operations.
	 User - a login account used to access data objects.
	Cassandra Query Language
	Transaction Management
	Query and Management Tools
	Figure 6 - DataStax OpsCenter, used for visual database administration.
	Figure 7 - DataStax DevCenter, used for visually querying databases.
	SECURITY MANAGEMENT
	Authentication
	Permission Management
	Encryption
	Data Auditing
	• All activity (DDL, DML, queries, errors)
	• DML only
	• DDL only
	• Security changes (e.g. assigning/revoking privileges, dropping users)
	• Queries only
	• Errors only (e.g. login failures)
	MANAGING AVAILABILITY AND MULTIPLE DATA CENTERS
	How to Ensure Constant Uptime
	Multi-Data Center and Cloud Options
	Figure 8 - A single DSE cluster can span multiple data centers and the cloud.
	ANALYZING AND SEARCHING DATA
	Real Time and Batch Analytics
	External Hadoop and Spark Support
	Searching Data
	Workload Management for Analytics and Search
	BACKUP AND RECOVERY
	Using Replication and Multi-Data Center for Backup and Recovery
	Backing up DataStax Enterprise
	Figure 9 - DataStax OpsCenter's backup interface.
	Restoring Data
	Figure 10 - Restoring a keyspace with OpsCenter.
	PERFORMANCE MANAGEMENT
	Monitoring Basics
	Figure 11 - Checking a cluster's status with the nodetool utility.
	Advanced Command Line Performance Monitoring Tools
	Visual Database Monitoring
	Figure 12 - Checking OpsCenter's global cluster dashboard.
	Figure 13 - Examining performance metrics for a single database cluster.
	Figure 14 - Creating an alert in OpsCenter.
	Figure 15 - OpsCenter's Best Practice service.
	Finding and Troubleshooting Problem Queries
	MIGRATING DATA
	ARCHITECT STRATEGIES FOR IMPLEMENTING NOSQL
	Evaluating NoSQL for Your Enterprise
	Technical Considerations
	 Can the NoSQL database serve as the primary data source for the intended online application?
	 How safe is the NoSQL database where the possibility of losing critical data is concerned? Are writes durable in nature by default so that data is safe?
	 Is the NoSQL database fault tolerant (i.e., has no single point of failure) and is it capable of providing not just high availability, but continuous availability?
	 Can the NoSQL database easily replicate data between the same and multiple data centers, as well as different cloud availability zones?
	 Does the NoSQL database offer read/write anywhere capabilities (i.e. can any node in the cluster be written to and read from)?
	 Does the NoSQL database provide a robust security feature set?
	 Does it support easy-to-create and manage backup and recover procedures?
	 Does the NoSQL database require or remove the need for special caching layers?
	 Is the NoSQL database capable of managing "big data" and delivering high performance results regardless of data size?
	 Does the NoSQL database offer linear scalability where adding new nodes is concerned?
	 Can new nodes be added and removed online (i.e. without business impact)?
	 Does the NoSQL database support key platforms/developer languages?
	 Does the NoSQL database provide an SQL-like query language?
	 Can the NoSQL database run on commodity hardware with no special hardware requirements?
	 Is the NoSQL database easy to implement and maintain for large deployments?
	 Does the NoSQL database provide data compression that supplies real storage savings?
	 Can analytic operations be run easily on the NoSQL database?
	 Can the NoSQL database easily interface with and support modern data warehouses or lakes that utilize Hadoop?
	 Can search operations and functions be easily and directly carried out on the NoSQL database?
	 Can the NoSQL database provide workload isolation between online, analytic, and search operations in a single application?
	 Does the database have solid command-line and visual tools for development, administration, and performance management?
	Business Requirements
	 Is the NoSQL solution backed by a commercial entity?
	 Does the commercial entity provide enterprise 24x7 support and services?
	 Does the NoSQL solution have professional online documentation?
	 Does the NoSQL solution have referenceable customers across a wide range of industries that use the product in critical production environments?
	 Does the NoSQL database have an attractive cost/pricing structure?
	 If open source, does the NoSQL database have a thriving open source community?
	Practical Guidelines for Selecting NoSQL vs. an RDBMS
	 Do you need a more flexible data model to manage data that goes beyond the RDBMS table/row data structure and instead includes a combination of structured, semi-structured and unstructured data?
	 Do you find that complex JOIN operations are overwhelming your RDBMS and response times are slow because of them?
	 Do you care more about the value derived from the relationships that form between the tables vs. the tables themselves?
	 Do you need continuous availability with redundancy in both data and function across one or more locations versus simple failover for the database?
	 Do you need a database that runs over multiple data centers / cloud availability zones?
	 Do you need to handle high velocity data coming in via sensors, mobile devices, and the like, and have extreme write speed and low latency query speed?
	 Do you need to go beyond single machine limits for scale-up and instead go to a scale-out architecture to support the easy addition of more processing power and storage capacity?
	 Do you need to run different workloads (e.g. online, analytics, search) on the same data without needing to manually ETL the data to separate systems/machines?
	 Do you need to manage a widely distributed system with minimal staff?
	Deployment Considerations
	1. New applications: many begin with NoSQL by choosing a new application and starting from the ground up. Such an approach mitigates the issues of application rewrites, data migrations, etc.
	2. Augmentation: some choose to augment an existing system by adding a NoSQL component to it. This oftentimes happens with applications that have outgrown an RDBMS due to scale problems, the need for better availability, or other issues. Parts of the ...
	3. Full Rip-Replace: for systems that simply are proving too costly from an RDBMS perspective to keep, or are breaking in major ways due to increases of user concurrency, data velocity, or data volume from cloud applications, a full replacement is don...
	CONCLUSION
	ABOUT DATASTAX

