
Hybrid Software
Architectures for Big Data

Laurence.Hubert@hurence.com
@hurence
http://www.hurence.com

mailto:Laurence.Hubert@hurence.com

Copyright Hurence 2014

Headquarters : Grenoble

Pure player “hot-line” assistanceTraining

Expert level consulting R&D Big Data
 X-data

Products

B-DAP
Big Data Analytics
Platform

BotSearch
Bot detection in
Non supervised
way

Big Data versus High Performance Computing

● Big Data inherits all the concepts and architectures designed by HPC experts

● High processors density

● IO optimizations (avoid network latency by co-locating tasks and data)

● High availability (fail over mechanisms) to ensure no down time

● Etc.

● Big Data democratizes HPC and make it enter traditional Information Systems

● Still generally less advanced than specialized HPC systems with GPUs and FPGAs
etc.

● More heterogeneous from a software standpoint: various tools coming from different
open source communities and not initially designed to work together.

● Not so much focused on power consumption at the moment...

● More focused on providing easy enough installation and monitoring tools as well as
programming tools and high level environments for non programmers (the
Business Intelligence or Marketing teams).

Big Data benefits from HPC computing’s revisited software…

Distributed File System

GFS

GPFS

Lustre

Parallel Progamming
 Model

MPP
(Spark)

MPI
(Storm,
 IBM
 System-S)

GraphX
(Spark)

GridFS

A distributed File
System

Store data on several machines
(High availability)
Replicate data several times (fault
tolerance)

A parallel
programming model

Organize tasks on multiple
machines (parallelization)
Schedule tasks where the data is
(no network latency)

Scale-out approach with commodity hardware (versus scale-up)

© 2011 – Gfi Informatique

Big Data star: the Hadoop cluster

 2 racks (on different electric systems)

 Network switch of 10 gigabytes /
second to connect machines

 A number of machines to act as “data
nodes” (store data) and “task nodes”
(compute things).

 2 processors machines (2x4 or
2x6 or 2x8 cores)

 Not less than 6 gigabytes
RAM/core

 DAS Storage (Directly Attached
Storage) with 1-2-3-4 terabytes
disks SAS or SATA configured
as JBOD: Just a Bunch of Disk

Big Data / Hadoop Distributed File System principles

File stored as multiple
blocks and 3 times

REPLICATION

CO-LOCATION OF TASKS
AND DATA

Job processing file is decomposed into parallel tasks
Each task scheduled on a server that holds
the block of data

Parallel programming models

Batch or « near real time »

• Map Reduce

Real time

• MPI (Message Passing Interface – stream processing)

• MPP (Massively Parallel Processing)

Specialized

• GraphX to process graphs on top of MPP

Since Hadoop YARN 2.0 Hadoop supports all models and is becoming a de-facto
Big Data operating system

Understanding Map Reduce through Hadoop MR

Counting colored squares…

Understanding MPI (Message Passing Interface) through Storm

Jobs are DAGs
(Directed Acyclic Graphs)
of tasks with 2 types:
Spouts: sources of data
Bolts: processors of data

Spout Twitter
(using twitter API)

Bolt
Text
mining

tweets

Spout Youtube)

Bolt
Video
to Text

video

Bolt
Storage

text

Text +
Facts

Understanding MPP (Massively Parallel Processing) with Spark

Task

Low latency, real-time,
in-memory parallel
processing…

Data is cached in-memory…
=> Distributed cache

A program is decomposed into parallel tasks
positioned on machines
First iteration, no data is cached
Second iteration, the program may run on cached
data sets.

RDD: Resilient Distributed
Dataset

Collecting, cleaning, enriching
Preparing data

Storing

Visualizing

Analyzing
And Predicting

Big Data plateforms

Big Data Life Cycle and Big Bazaar!

ƛ (lambda) architectures

New architectures enabled by Hadoop YARN 2.0

Different job schedulers can now launch different jobs (batch jobs or
real-time jobs)

Resources are managed globally by a resource manager

Still... some layers / tools do not release their resources if not needed ;
they are not good multi-tenant citizen...

Different parallel paradigms want to access the same resources

I am the Speed layer
and I want all my RDD
to be in-memory

I am the service layer and
I want to cache the database
data in-memory

I am the batch layer and I
want to set maximum memory
on my processes to avoid
swapping since swapping
is performance killer

For network latencies reasons all goes to the same cluster of
machines

Configure RAM utilization
 64G

Configure RAM utilization
 64G

Configure RAM utilization
 64G

The problem with superposing many Big Data technologies

We have an inflation of memory on the machines... because
we must provide enough memory for each of the
components including databases in silos...

An example: two different in-memory systems using the same
file will load the data in-memory two times... there is no
global knowledge across tools that this data is already in-
memory...

Also if one layer is unoccupied, the other layers cannot use the
memory it does not use in a flexible and dynamic way (there
is no “global capacity scheduler”). Every single tool has a
static memory configuration.

=> heterogeneity of Big Data requires better management of
resources (in particular memory resources)

The way forward...

=> there is a need for very clever resources managers and schedulers
sufficiently “standardized” to allow many technologies to be working
together and not in silos from a hardware standpoint.

=> Hadoop YARN has been a first move towards providing common resource
management ; but many improvements are needed to manage resources in
a much more clever way.

Rendez-vous in 2015 for the Hadoop improvements...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

